
FDX – Federating Devices and Web Applications
Martin Gaedke

University of Karlsruhe
Engesserstr. 4

76128 Karlsruhe, Germany
+49 (721) 608-8076

gaedke@tm.uka.de

Johannes Meinecke
University of Karlsruhe

Engesserstr. 4
76128 Karlsruhe, Germany

+49 (721) 608-8072

meinecke@tm.uka.de

Andreas Heil
Microsoft Research Cambridge

7 JJ Thomson Avenue
CB3 0FB Cambridge, United

Kingdom
+44 (1223) 479-0

v-aheil@microsoft.com

ABSTRACT
Electronic devices have been used for the support of everyday
tasks in domestic and professional environments for some time
now. Currently, there is a tendency towards a combined
application of individual gadgets that are connected within locally
confined environments via a diversity of protocols and
technologies like UPnP, WLAN and Bluetooth. As one step
further in this direction, there is the vision of devices that are
globally and uniformly connected through the WWW, extending
the Mobile Web to a Ubiquitous Web. Hence, this allows for
scenarios where actions on one device can trigger events on an
arbitrary other device, and where third-party Web services from
anywhere in the world are involved. Ultimately, this results in
federations of devices and Web services belonging to different
households, companies, suppliers and service providers, forming
new kinds of Web applications that integrate devices as an
additional dimension. To fulfill this vision, solutions are required
that are able to abstract from the different device implementations
and bridge the gap between the device and the Web. In this paper,
we present the Federated Device Assembly (FDX) approach that
offers an integrated management platform for wrapping and as
such connecting arbitrary devices to enable new forms of Web
applications along with the means to model such federations.
Furthermore, we demonstrate how the required infrastructure
systems can be realized by introducing a reference architecture
and a generic Web service interface.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed Systems –
Distributed applications; D2.12 [Software Engineering]:
Interoperability - Interface definition languages; H.3.4
[Information Storage and Retrieval]: Systems and Software -
Distributed systems; H3.5 [Information Storage and Retrieval]:
Online Information Services - Web-based services

General Terms
Design, Security, Management, Standardization

Keywords
Architecture, Device, Federation, Integration, Service
Infrastructure Systems, Web Service

1. INTRODUCTION
The domestic and professional environments of users in today’s
information era are strongly influenced by a multitude of services
and electronic devices. Moreover, we observe, that the trend of
interconnecting those devices has increased within the last years
[1]. For example, while in the beginning cell phones were stand-
alone devices, a modern smart phone can now be integrated into a
network by offering a wide range of communication capabilities.
But even if devices have the capability to connect to computers
through a network and offer services such as synchronization,
they still have very limited capabilities in communicating with the
environment. In conventional scenarios, it is often the user, who
has to map data from the environment to the device manually in
accordance to some business process. However, the real potential
benefit is reached when the data from the environment transcends
domestic and organizational boundaries, supporting business
processes and applications on a federated global scale. For
example, the control over devices integrated in the user’s
environment could then be outsourced to companies providing
new kinds of business services.
To realize this potential, the systematic integration of a wide
variety of heterogeneous hardware devices into an environment
builds the necessary foundation. One well-known industry
standard for achieving this is Universal Plug and Play (UPnP)
[18]. An example for a UPnP standard is the device specification
for HVAC systems1. Such a HVAC system includes heating and
cooling equipment and can be controlled remotely by other UPnP-
enabled devices and software. Several systems can be combined
and zoned for large buildings, but controlling the system is
restricted to the local network by design. Therefore, the
combination with services from providers outside the local
network to establish federations is difficult or not possible at all.
In practice, most electronic gadgets do not follow a standard like
UPnP, but still provide some proprietary capabilities for
interconnecting. This high degree of diversity poses an obstacle
for the integration and combined usage of devices and hinders
their systematic integration. Hence, using those devices in a
uniform way to establish ubiquitous business processes remains a
problem to be solved.
As global communication platform, the WWW offers the
necessary standards for heterogeneous environments and as such
enables global device interaction. Once the gap between devices

1 HVAC stands for Heating, Ventilation and Air Conditioning.

Copyright is held by the author/owner(s).
ICWE’06, July 11–14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

and the Web is bridged, they become building blocks for Web
applications that scale from domestic to businesses environments.
In this paper, we propose a solution to this gap by introducing a
systematic approach to model and federate devices as a basis for
novel Web Engineering tasks. In Section 2 the challenges to the
integration of devices are investigated and the state of the art is
discussed. Following this, we present the Federated Device
Assembly (FDX) as an infrastructure building block
encompassing a way of describing the functionality of arbitrary
devices in a generic and federatable manner. Based on this
conceptual approach, a reference architecture along with an
interface specification for the realization of FDX is given in
Section 4. In the last sections we demonstrate an application of
the approach by implementing several concrete FDX, based on
different hardware devices. We conclude with a summary of the
lessons learned.

2. STATE OF THE ART
In order to realize the interconnection of arbitrary devices, several
problems have to be addressed. Thus, different approaches can be
found, trying to solve these issues. Each approach focuses on a
very specific part of the overall problem. Some try to establish a
standard for devices, enabling their dynamic connection. Others
try to establish a standardized infrastructure including special
wires and protocols to avoid protocol diversity and thus require
devices manufactured especially for this infrastructure. All
approaches have in common that a diversity of description
languages is used to enable a consistent way of controlling the
devices. Finally, the capability of building federations with these
devices across organizational boundaries is still an issue that lies
outside the scope of most available approaches.
As underlying technology, several software-based approaches are
available: CORBA [13], DCOM [12] and RMI [17] are existing
standards that enable the communication with the devices but are
not interoperable with each other. These de-facto standards rely
either on a specific communication infrastructure, on a platform
or on a certain programming language, and can be connected to
each other only by additional gateways. In contrast, Web services
combine many advantages of the previous approaches and in
addition allow a platform as well as programming language
independent implementation of a service. Common to all
approaches mentioned is the capability to expose the software’s
functionality to its environment. However, this ability is missing
for most devices that are capable of connecting to a computer-
based network. The previously named approaches and software
standards form the base to approach the challenges described in
the following.
Challenge: Dynamic Connection

Within a ubiquitous computing scenario, the infrastructure tends
to rapidly change and thus modify the original setup. As devices
are frequently attached and removed from a network, a static
description of the system’s model is impractical. Two approaches
addressing this issue are Universal Plug and Play (UPnP) [18] as
well as the Jini Network Technology [16]. Both approaches allow
a dynamic modification of the infrastructure by providing
appropriate descriptions and infrastructure services for attached
entities. Each approach respectively each de-facto standard
restricts the infrastructure to a certain type of technology. Projects
like Shaman [15] or Sindrion [6] try to integrate further types of

devices into those infrastructures. In this context, wrappers acting
as gateways grant either access to a UPnP or a Jini infrastructure.
As a result, only a limited subset of the devices’ functionality
(UPnP subset respectively Jini subset) is provided within the
corresponding infrastructure. In addition, both approaches only
focus on a specific class of devices to be integrated. However,
these approaches do not intend to connect the different
infrastructures.

Challenge: Protocol Diversity

Infrastructures built on software-based standards like UPnP or Jini
allow a seamless integration of specific devices into existing
network technologies like Ethernet. In addition, each standard
provides specific communication protocols. Devices that are to be
integrated into this network must implement those particular
protocols. Besides software-based approaches, a second type of
networked device exists: Usually based on a hardware bus, these
systems require additional infrastructure, i.e. hard-wired within
buildings. Approaches like KNX/EIB [8] or LonWorks [5]
provide their own protocols, predominately on lower levels of the
ISO/OSI reference model. Some offer the ability to make use of
existing infrastructures like twisted-pair, power lines or IP-based
networks. Even if integrated into existing infrastructures, the
systems still fall back on their own protocols. The main advantage
of these standards is that devices can be added with a minimum of
effort. The integration of devices not implementing those
protocols is not supported.

Challenge: Description Languages

To support a seamless integration of devices into a network, each
device must be capable of describing its own functionality in a
well-defined way. Providing this information can be
accomplished with the help of an Interface Definition Language
(IDL), like e.g. in the case of DCOM or CORBA. In contrast to
these proprietary approaches, the W3C published the Web Service
Description Language [4], which provides an XML-based
notation for describing interfaces and communication patterns for
Web services. Nevertheless, it focuses on services, not on devices.
UPnP provides an approach that covers an XML-based device
description, which is however restricted to predefined sets of
device types.

Challenge: Building Federations

Even if devices are accessible within a confined environment, the
question remains how to expose their functionality to external
partners to found a federation. As a first approach towards
federation, the Open Service Gateway Initiative (OSGi) [10]
allows third-party providers to make their services available
within a domestic network. However, the platform provided by
the OSGi is very limited, as it does not support exposing local
services to the outside or required aspects of establishing secure
inter-organizational partnerships, i.e. for example identity and
access management.

We have seen that several approaches exist, each with a strong
focus on a specific problem. Considering the existing solutions,
we realize that a more flexible approach is needed to lead the
Mobile Web to a Ubiquitous Web.

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

3. THE FDX APPROACH
In this section, we describe the Federated Device Assembly
(FDX) approach, which focuses on the federation of arbitrary off-
the-shelf devices, attached either to the computer or to the
network directly. The approach is founded on a device model,
abstracting hardware-specific realizations and allows publishing
device capabilities in form of Web services as uniform building
blocks for federated Web applications and systems.

3.1 FDX Infrastructure Concept
The FDX approach is based on the description of devices on an
abstract level. To find an adequate abstraction level for physical
devices we performed an evaluation of a wide range of physical
devices with nearly 900 functional features. We were able to
segment these features into the three building blocks: Methods,
properties as well as events, whereas each of the examined
devices can be composed of these three groups.

FDX

FDX

FDX

Device

Methods

Properties

Events

Device

Methods

Properties

Events

Device

Methods

Properties

Events

FDX

FDX

Organisational Boundaries
Figure 1. FDX Infrastructure Concept

While this device’s functionality usually is bound to its physical
environment, a FDX exposes this functionality to the environment
of the partners of the federation by wrapping the hardware on a
software level. Thus, the FDX must be either located on the
computer or on the network connected to the device – acting as
mediator between the specific protocols of the device and the
standardized Web service protocols. Focusing on this mediation
and on Web services based federation protocols, FDX can invoke
functionality among each other and even cross the boundaries of
organizations, indicated by the dashed lines in Figure 1.
To share the device capabilities among different services, we
introduced the concept of the Device Card, a model describing
devices based on the building blocks introduced before.
The root element of the model is based on the Dublin Core
Metadata Initiative [2]. This de-facto standard for common meta-
data attributes provides a wide range of reusable attributes for
further use of the model like identifier and title. To allow the
modeling of more complex units, parent-child relationship is
applicable. Consequently, several sub devices can be part of one
device. This also allows the modeling of complex devices such as
provided by the UPnP standard. To offer a more flexible
approach, the Device Card is extendable with additional
information by adding further metadata schemas.
A status variable describes a property of a device, providing read-
only information. In case of a HVAC system, such as introduced
in Section 1, a status variable could be e.g. the current outdoor
temperature or the fan speed of the system. Moreover, the uptime
or the current error state can be published as status variables.
Thus, status variables cannot be manipulated directly from outside

of the device. Properties, which can be set as well as methods
exposed by the device, affecting internal or external states, are
outlined as functions in the model above. Within our example, the
target temperature could be modeled as such a property. In both
cases, a function is invoked directly from outside of the device.
Events become relevant as soon as state changes within a device
occur. They allow to model event channels that enable devices or
systems of the federation to subscribe to. In our example,
reaching the target temperature could cause the raising of such an
event.

Type
Name
Direction

Parameter

Identifier
Name

Event

Description
Value

Metadata

Identifier
Type
Name

Function

Location
Device

1

Metadata

0..*
1

SubDevice

0..*

1

Function0..*

1

StatusVariable0..*

1

Event0..*

Identifier
Title
...

Entity

1

Parameter

0..*

1

Parameter

0..*

Identifier
Type
Name

StatusVariable

Figure 2. Device Card Model

With an understanding of the abstract concept of devices, we now
focus on the integration of such devices in a model towards a
Ubiquitous Web.

3.2 Modeling Device Federations
The idea of bringing together Web services and devices supplies
the basis for applying already existing Web-based technologies.
This includes the area of federated access control, like e.g. WS-
Federation [3] or the Liberty Alliance project [9], to support inter-
organizational scenarios. An important issue to be addressed in
this context is the question of how to model such federations. In
particular, descriptions are required that explicitly state, which
devices, services, and applications are involved, by whom in the
federation they are controlled and how they invoke each other.
For this purpose, we have extended our previous work, the
WebComposition Architecture Model (WAM) [11], which is an
approach to modeling the architecture of inter-organizational Web
systems with special focus on federated access control and the
mentioned federation specifications. As a main component, WAM
comprises an easy to apply graphical notation that we have
supplemented with new symbols in order to cover not only Web
applications and services, but also devices as subjects of
federation. Instead of giving an extensive definition of the model,
we limit ourselves to the illustration of the examples introduced in
the section before (cf. 1 and 3.1).

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

AccessProfile1

trusts

App1

AC

FDX1

Temp

FDX2

Comp
A

Comp
B

Figure 3. Example WAM Diagram

The example is concerned with a company that has outsourced the
control of its air conditioning system to another company that
disposes of a network of meteorological stations and can therefore
regulate the indoor climate very efficiently. The modeled scenario
contains two devices: A temperature sensor Temp and the
controllable air conditioning system AC. WAM distinguishes
between sensor devices that only supply information, and actuator
devices that also influence their environment. In correspondence
to the approach described in the last section, the devices’
capabilities are made available with the help of Federated Device
Assemblies, modeled as Web services FDX1 and FDX2 in Figure
3. These services in turn are integrated into the Web application
App1 that allows the staff of company A to monitor the whole
process based on service level agreements (SLA) and configure
the climate policy respectively. The technical details about the
Web service invocations, e.g. in terms of security specific
protocol extensions, remain outside the graphic description. These
are described as reusable profiles, which are referred to by labels
(AccessProfile1). As depicted, the calling application and the
called FDX are controlled by separate parties, represented by two
different so-called security realms (CompA and CompB). In order
to model the federation of both partners, trust has been established
between the two realms of the partners. In this case, realm CompB
trusts realm CompA to use its FDX, probably based on an
agreement concluded before. For instance, if a federation-specific
protocol like WS-Federation is applied to realize the model, then
the trust agreement might include the configuration of a format
for security tokens integrated into the Web service messages as
well as the exchange of digital certificates so that the tokens can
be cryptographically validated. This pre-established trust enables
controlled accesses from requestors from CompA to the resources
at CompB without requiring the requestors to have a separate
account at CompB. One of the design goals of WAM was to
abstract from the implementation-specific details in favor of a
good overview of the federation structure. For further details
about WAM and the underlying semantics, please confer [11].

4. FDX APPLICATION STRUCTURE
After having introduced the basic concepts, we now briefly
describe the concrete architectural elements, necessary to build
FDX components.

4.1 FDX Reference Architecture
Since devices differ considerably in functionality, we defined a
reference architecture for developing FDX (cf. Figure 4). To use
the devices functionality, at least direct access to the device driver
or access to an adequate remote interface must be available (e.g.
UPnP device and service description).

Optional
Component

Device
Data

Web Service

STAIVE

Status
Manager

Event
Manager

Device Driver

Figure 4. Federated Device Assembly

By design, any device-specific communication technology can be
chosen to connect a device to its FDX. Further communication
with the device takes place only through the FDX. Thus, the FDX
appears as an endpoint for any application accessing the device’s
functionality. The location of the device is transparent to the
calling application, as all communication takes place between the
application and the FDX, represented by a Web service.
If the device is not attached to the same platform where the FDX
is deployed, e.g. communication takes place over RMI, DCOM or
SOAP, the FDX still appears as an endpoint at the same location
even if the devices are moved within a system either physically or
logically. The necessary mapping between the FDX and the
device is the encapsulated secret of the FDX implementation. As
such, the FDX can be treated as a black box like any other
component or Web service in the context of Web Engineering
principles.
As explained before, the basic setup of each device can be
reduced to the three elements status variables, events and
functions. These different types of information are processe
within a FDX using several components (cf. Figure 4).
Communication between the device and the so-called Status
Manager is unidirectional by polling read-only properties of the
device. Thereafter, the FDX provides the received data as status
variables. Depending on the implementation, the Status Manager
can poll a required value on demand or repetitively without
external request to cache the values within the FDX. The Event
Manager, e.g. implemented as stand-alone process, listens to a
device’s events and hands these over to subscribers of the FDX’s
event channel.
In order to cache device configurations of attached devices as
well as to provide device descriptions through the service, each
FDX implements a Device Data component. This component
realizes database functionality by storing a collection of Device
Cards and as such ensures scalability in terms of the number of

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

devices. For managing only a few devices, the Device Data can be
stored in memory. To achieve persistence the information can be
stored within data files, e.g. an XML file on the local storage
device. For managing many devices, e.g. large-scale sensor
networks, the usage of a database management system should be
considered.
The FDX Web service offers a generic interface to publish
information and receive incoming requests for exposing the
functionality of a device or a set of devices. This interface is
called STAIVE and is further discussed in the following section.
The component-based concept of a FDX allows for adding
optional components to handle the attached devices in an
appropriate manner. The FDX approach is thus very flexible to
wrap certain sets of devices while its composition is not restricted
in any way.

4.2 STAIVE Interface
Based on our investigations, we defined a limited set of
operations that are necessary to cover the three aspects of a
device’s functionality. Consequently, the operations within a FDX
allow the request and manipulation of status, invocation, and
event. In correspondence to this, the proposed interface is called
STAIVE. In addition, the FDX supplies the description of each
device connected to the FDX, enabling the use of the STAIVE
interface. Communication between the client and the FDX is
event-driven by design to enable the publish-subscribe pattern.

The complex events that are exchanged in event channels or by
invoking methods require a dedicated support for dealing with the
magnitude of complexity: This is introduced by the principle of a
context. The context is used as the single method parameter,
allowing for stable method signatures, even though the context
may change. It is realized as an XML document enriched with
metadata based on the Dublin Core Metadata Initiative
(namespace dc). Furthermore, FDX-related data is described in a
separate namespace (fdx). This approach allows for extending the
complex events respectively contexts by simply adding new
namespaces responsible for transporting additional event
information.

Status Variables

The FDX concept allows requesting status variables individually
from specific devices. To request a status variable, the operation
GetStatusVariable as part of the STAIVE interface is called. The
context contains an identifier realized as a Uniform Resource
Identifier (URI) that allows a distinct identification of the device
connected to the FDX and its status variable.

<xs:complexType name="VarContext"> (1)
 <xs:sequence>
 <xs:element ref="dc:Identifier"
 minOccurs="1" maxOccurs="1" />
 </xs:sequence>
</xs:complexType>

Invocation
Similar to the status variables, the invocation of operations on a
device is encoded into the invoke context (2) by a defined
identifier handed over to the InvokeFDX operation. Again, the
identifier allows addressing the device and the corresponding
operations to invoke.

<xs:complexType name="InvokeContext"> (2)
 <xs:sequence>
 <xs:element ref="dc:Identifier"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="InvokeParameter"
 type="fdx:InvokeParameter"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

To hand over the necessary arguments, each parameter contains a
name and a value. The order in which invoke-parameters appear
within the context have to correspond to the called operation’s
signature, which are in turn described in the Device Card. The
implementation must verify these values before processing any
further actions to ensure the system’s robustness against invalid
input.

Eventing
The STAIVE interface introduces two operations to Subscribe to
and Unsubscribe from event channels on a given FDX. The
subscribe context is made by a pair of two elements: An identifier
describing the event to subscribe, as well as the description of a
call-back (3).
<xs:complexType name="SubscribeContext"> (3)
 <xs:sequence>
 <xs:element name="Event"
 type="fdx:SubscriptionIdentifier"/>
 <xs:element name="Callback"
 type="fdx:Callback"/>
 </xs:sequence>
</xs:complexType>

The call-back specifies the operation to invoke after an event
occurs. The operation is described using an invoke context for the
specified operation (4). Hence, the FDX performing the call-back
invokes the operation by sending the context to the invoke
operation implemented at the subscribers.
<xs:complexType name ="Callback"> (4)
 <xs:sequence>
 <xs:element name="Location"
 type="xs:anyURI"/>
 <xs:element ref ="fdx:InvokeContext"/>
 </xs:sequence>
</xs:complexType>

Consequently, the subscriber must implement the STAIVE
interface as well, if call-backs are required. In particular, the
subscribed FDX can process the call-back easily by sending back
the invoke context handed over before. The subscribed FDX must
be informed about the address of the call-back endpoint, since this
information is not available within the invoke context. Thus, the
subscribed FDX does not rely on additional infrastructure services
such as UDDI to resolve the subscriber’s endpoint.
<xs:complexType (5)
 name="UnsubscribeContext">
 <xs:sequence>
 <xs:element name="Event"
 type="fdx:SubscriptionIdentifier"/>
 <xs:element name="Callback"
 type="fdx:SubscriptionIdentifier"/>
 </xs:sequence>
</xs:complexType>

The unsubscribe context (5) is similar to the one used for
subscriptions. Instead of a context for the call-back, only the its

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

identifier is used. The management of those subscriptions lies
within the concern of the FDX and its Status Manager. If a
subscriber is not available anymore and the FDX receives an error
or timeout due to a call-back, the Status Manager can clear the
subscriptions to keep the internal state up to date.

5. FDX Applied
In order to validate the concept of the Federated Device
Assembly, two FDX for different classes of devices have been
implemented. One proofing the concept of devices directly
connected to the network and the other for devices attached
directly to a computer. The first covers the UPnP specification
and allows connecting remote UPnP devices through the FDX
located on one computer on the network. The FDX takes care of
detection and management of available remote UPnP devices
within the UPnP network and exposes their functionality (by
mediation) to non-UPnP devices through the STAIVE interface.
The second one described in the following was implemented for a
set of electronic devices attached to a computer directly, so-called
Phidgets [14]. Phidgets are basically low cost electronic building
blocks connected to a personal computer via the Universal Serial
Bus (USB), providing sensing and controlling capabilities. The
manufacturer provides an intuitive Application Programming
Interface (API) to control the devices. However, the scope of the
devices is the connected PC. Communication to other devices is
not intended, making them good candidate for the FDX approach.

Figure 5. Supported Phidget Devices

Several different types of devices are supported by the Phidget
FDX. As an example for actuator devices, the Phidget Text LCD
was used. This component provides two lines of text, with a
maximum of 20 letters per line. Besides displaying text, operating
the background light as well as several cursor operations are
supported by the device. Another device is the Pan & Tilt Kit with
a mounted Webcam. The Phidget InterfaceKit 8/8/8 board was
chosen to support sensor input. This board supports up to 8 analog
and 8 digital input sensors. In addition to the InterfaceKit, several
sensors are supported by the FDX. In Figure 5, several of the
supported sensors are displayed.
Based on the recommendations introduced in Section 3, we
developed a FDX for Phidget components (cf. Figure 6).

Device
Data

Web Service

STAIVE

PhidgetListener

Templates

.NET Wrapper

Phidgets.dll

Subscription
List

Un-(Subscribe)

Notify

Invoke

Figure 6. Phidgets FDX

The manufacturer offers a Microsoft Windows 2000/XP driver as
well as a Linux driver available as pre-release code. In addition,
libraries are available to access the devices using the Microsoft
.NET 2.0 Framework. Falling back on the Windows driver, we
implemented the Phidget FDX using the Microsoft .NET
Framework 2.0. The FDX was designed to support a wide range
of different Phidget devices. For each device type, a template
based on the Device Card model was created. When a device is
attached the corresponding template is loaded, processed and
stored within the Device Data component. During this process,
the template is filled using the device’s name, serial number etc.
As a device is removed and attached again, the stored Device
Card is identified and used instead of processing a template again.

Comp
 A

Comp
 B

Display AC

DB2

Temp

FDX3

FDX1

DB1

App1

Magnetic

FDX1 WS1

PU1

AccessProfile2

AccessProfile1

trusts

Figure 7. WAM diagram with Phidget Devices

The Event Manager, as described in Section 3, is realized as a
separate process (called PhidgetListener in the following). The
PhidgetListener reacts on every event fired by the attached
Phidget devices, including recently attached and removed devices.
After a device raises an event, the PhidgetListener examines the
Subscription List, a locally stored mapping of subscribed events
and call-backs to perform. Furthermore, the PhidgetListener takes
care of subscribing and unsubscribing requests, received through
the FDX’s STAIVE interface.

Based on the devices supported by the Phidgets FDX, we extend
the example from Section 3.2 by adding additional services and
devices (cf. Figure 7)
The example shows the service of CompA extended by several
databases to store and retrieve weather information. In addition,

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

the provider can send information directly to the display through
FDX1 to inform the customer on CompB’s side about the current
cumulative energy consumption costs. Besides the information
collected from the internal meteorological sensors of CompA, it is
possible for the provider to check the current state of opened
windows magnetic switches in CompB’s estates. Consequently,
the system can be controlled more effectively in terms of
economic and ecologic factors. Furthermore, the model addresses
access restrictions to a dedicated Web service (WS1), which
cannot be accessed by users at CompA.
Figure 7 stresses the analogy of databases and sensor devices
within WAM. Both entities, software as well as hardware, provide
data to the distributed system. Considering read-only access to a
database, no particular difference can be detected if the
information beyond the Web service is accessed by another
service or application. In addition, the actuator devices, e.g. the
display and AC system in the example, can be seen as an analogy
to process units (both perform actions). Thus, it is possible to
bridge the gap between physical devices and the software services
in modeling federated environments.

Figure 8. FDX Integration into the WSLS

A further step was to integrate the new FDX into an existing
infrastructure to proof the federated approach. For this reason, the
Web Service Linking System (WSLS) [7] was used. This service-
based framework support the seamless integration of Web
services and as such, the integration of FDX. By configuring a
presentation component, it was possible to visualize the available
functionality of all devices within a federation (cf. Figure 8).

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the Federated Device Assembly
(FDX) as an approach to enhance Web applications by extending
their interaction dimensions with device capabilities in a federated
environment. We introduced a generic interface and a flexible

way of describing devices to allow for arbitrary gadgets to be
connected to different systems. The service-related approach,
together with corresponding federation mechanisms such as WS-
Federation, allows offering this functionality as services beyond
system or organizational boundaries.
We introduced the basic concept of describing devices as a
composition of operations, properties, and events. Based on these
descriptions, we developed the STAIVE interface, the key
concept for functionality within the FDX. Thus, the functionality
can be provided to federation partners. With respect to modeling
Web applications, we extended the WebComposition Architecture
Model (WAM) to engineer Web applications on an abstract level
including applications, services as well as devices. The
integration into the Web Service Linking System (WSLS) showed
a first proof of concept in integrating devices into existing,
federated environments. By developing the FDX approach, we
have demonstrated that devices can be integrated into a federated
system, even if the devices are initially not designed for this
purpose. Furthermore, the FDX approach allows using devices
during the process of Web Engineering in the same manner as any
other service.
The FDX concept was applied for two very different classes of
devices. Thus, it was shown that a wide range of devices is
covered by this approach. We are planning to extend the available
number of FDX to widen the base for further device integration.
Further investigation will also include additional hardware-
specific issues, such as modeling accounting for energy
consumption, bandwidth and resource usage in general. Finally,
the currently established event mechanisms will be extended to
allow for applications based on more complex inter-device
relationships.

7. REFERENCES
[1] Accenture, Digital Home Solutions: Issues, Trends and

Consumer Insights. 2005
[2] Andresen, L., Dublin Core Metadata Element Set,

Version 1.1: Reference Description - Recommendation.
(2004): http://dublincore.org/documents/dces/
(15.02.2006).

[3] Bajaj, S., et al., Web Services Federation Language
(WS-Federation) - IBM Developer Network (2003):
http://www-
106.ibm.com/developerworks/webservices/library/ws-
fed/ (14.10.2004).

[4] Christensen, E., et al., Web Services Description
Language (WSDL) 1.1. 2001

[5] Echolon Corporation, Introduction to the LonWorks
System. 1999.

[6] Gsottberger, Y., et al., Sindrion: A Prototype System for
Low-Power Wireless Control Networks, in 1st IEEE
International Conference on Mobile Ad-hoc and Sensor
Systems. 2004: Fort Lauderdale, Florida, USA

[7] It-Management and Web Engineering Research Group
(Mwrg), WebComposition Service Linking System -
Website (2006): http://mw.tm.uni-karlsruhe.de/projects/
wsls/ (30.11.2005).

[8] Konnex Association, System-architecture. 2004

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

[9] Liberty Alliance Group, Liberty Alliance Specifications
- Website (2004): http://www.projectliberty.org/
resources/specifications.php (15.02.2006).

[10] Marples, D. and Kriens, P., The Open Services Gateway
Initiative: an introductory overview. IEEE
Communications Magazine, 2001. 39(12): p. 110-114.

[11] Meinecke, J. and Gaedke, M. Modeling Federations of
Web Applications with WAM. in Third Latin American
Web Congress (LA-WEB 2005). 2005. Buenos Aires,
Argentina: IEEE Computer Society. p. 23 -31.

[12] Microsoft Corporation, DCOM Technical Overview -
MSDN Library Article (1996):
http://msdn.microsoft.com/library/en-us/dndcom/html/
msdn_dcomtec.asp (15.02.2006).

[13] Omg, Object Management Group - Website (2006):
http://www.omg.org/ (15.02.2006).

[14] Phidgets Inc., Phidgets - Website (2003): (15.02.2006).
[15] Schramm, P., et al., A Service Gateway for Networked

Sensor Systems, in IEEE Pervasive Computing. 2004.
p. 66-74

[16] Sun Microsystems Inc., Jini Architecture Specification.
2003

[17] Sun Microsystems Inc., Java Remote Method
Invocation (Java RMI) - Website (2006):
http://java.sun.com/rmi/ (15.02.2006).

[18] Upnp Forum, UPnP Forum - Website (2006):
http://www.upnp.org (06.02.2006).

meinecke
Text Box
M. Gaedke, J. Meinecke, A. Heil; FDX - Federating Devices and Web Applications; Proceedings of the Sixth International Conference on Web Engineering (ICWE), Pages 95-102, Palo Alto, USA, 11-14 July, 2006.

