
A. Heil, I. Moradi, T. Weis; LCARS – The Next Generation Programming Context, CAI '06 Proceedings of the International
Workshop in Conjunction with AVI 2006 on Context in Advanced Interfaces, Pages 29 – 31, Venezia, Italy, May 23-26
2006.

LCARS – The Next Generation Programming Context
Andreas Heil

Universität Stuttgart
Universitätsstraße 38

70569 Stuttgart, Germany

andreas.heil@ipvs.uni-stuttgart.de

Iman Moradi
University of Huddersfield

Department of Creative Technologies
Canalside East, HD1 3DH, UK

i.moradi@hud.ac.uk

Torben Weis
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart, Germany

torben.weis@ipvs.uni-stuttgart.de

ABSTRACT

In this paper, we present a high-level graphical language to

develop pervasive applications based on a unique interface

design. The language supports a wide range of programming

constructs. Its graphical notation is based on the LCARS design,

which is appealing to different target groups, based on their

specific interests and requirements. We show that users can easily

create pervasive applications using an LCARS-based user

interface. The first step is to describe the technical context in

which the application will execute. Based on this technical

context, the UI offers a context-specific set of visual primitives.

By composing these visual primitives on the screen, the user can

specify the behavior of the application.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:

User Interfaces – Graphical user interfaces (GUI), Interaction

styles (e.g., commands, menus, forms, direct manipulation);

H.1.2 [Models and Principles]: User/Machine Systems – Human

factors.

General Terms

Design, Human Factors, Languages.

Keywords

Visual Programming Languages, VRDK, Robots, Model-Driven

Software Engineering, Context, Ubiquitous Computing.

1. INTRODUCTION
In the 1980s Michael Okuda designed a new kind of user interface

(UI) known as Library Computer Access and Retrieval System

(LCARS) [9]. The name originally stands for the main computer

onboard of Galaxy-class starships of the television series Star

Trek: The Next Generation [2] but it is also used for the colorful

interface featured in the television series. Based on this design

which is commonly appropriated on many fan websites, a

community approach tried to develop and publish a standardized

layout and color scheme to investigate if it is possible to assign

real functionality to the fictional interface and to use the LCARS

in a manner in which it was meant to be utilized in within the

series [8]. Inspired by this idea, the Visual Robot Development

Kit (VRDK) [5] UI was developed to create an easy accessible

interface to program systems related to their current context rather

then the specific platform the code has to be developed for.

Beside this, we point out a specific feature of the UI that enables

you to abstract the appearance of several UI elements by

presenting these elements to the user in an appropriate context.

This paper is organized as follows. In the next Section we discuss

related work. In Section 3 we describe the VRDK user interface

and overall features of the system. Section 4 addresses the

context-related programming building blocks and their usage. We

conclude with a summary of the lessons learned and an overview

of future work on this topic.

2. RELATED WORK
Several kinds of visual programming languages exist already. Two

that have been around for over 15 years and cater to professionals

within science and the arts, are LabVIEW [7] and Max/MSP [3].

LabVIEW provides a graphical programming language, which

focuses on the design, control, and testing of embedded systems,

industrial monitoring, and a variety of automated tests and

measurements. Max/MSP is widely used by performers,

composers, and musicians to synthesize sample and process

signals in an intuitive visual way. Core graphical elements used in

Max/MSP can be modified using different user specified object

names thus changing their current context. Both approaches have

a tendency to allow users free reign over layout without providing

many helpful cues.

3. THE LCARS APPROACH
Inspired by the distinguishable qualities of the LCARS interface

elements, the VRDK design introduces several visual concepts for

interacting with the application. For a seamless integration of the

programming environment, the LCARS design was applied to the

entire VRDK application. As we learnt the chosen interface had

three elements, which made it very enjoyable to use: In [6]

challenge1, fantasy2, and curiosity3 are mentioned as the three

building blocks which make the user experience captivating and

enjoyable.

Figure 1. Applied LCARS style

1 Finding and testing the capabilities of the tool.

2 The Star Trek Television series associations.

3 Discovering a new interface.

A. Heil, I. Moradi, T. Weis; LCARS – The Next Generation Programming Context, CAI '06 Proceedings of the International
Workshop in Conjunction with AVI 2006 on Context in Advanced Interfaces, Pages 29 – 31, Venezia, Italy, May 23-26
2006.

As depicted in Figure 1, standard UI elements were replaced by

LCARS inspired elements. The regions depicting Process,

Function as well as Hardware are the equivalents to tabs, while

Ink, Mouse, and Erase can be understood and operated as a group

of radio buttons. With the same appearance Run complies with the

functionality of a button. Finally, the image also shows a textbox

that contains the text VRDK. Users can identify the purpose of

each UI element in relation to its particular semantic space [4]

without explicit reference to common design conventions.

The first step in developing a new application model is to set up a

specific technical context, which has to be composed (cf. Figure

2). Additional entities available for composing a context can be

easily created and added as plug-ins.

Figure 2. Composing a programming context

Related to the aforementioned context composition, the user gains

access to specific commands and functions. By adding new

elements to the technical context, new iconic programming

elements are added to the UI. Figure 3 shows an increasing variety

of programming elements as new devices and software

components extend the technical context.

Figure 3. Context related programming elements

Often, non-traditional audiences are the target users of visual

programming languages [1]. We can identify several groups of

users who may benefit from the system: Young children (6-12

years) benefit from the context-related availability of commands

and functionality, focusing on the particular topic of interest.

Children (12-16 years) are interested because they are driven by

exploration and the learning of new things as well as working

with systems, which present a playful challenge. Young People

and adults (16-50) as well as elderly people (50 and above)

benefit from simple uncluttered interfaces.

4. CONTEXT RELATED VISUAL TOKENS
The visual programming language used in the VRDK is based on

a context-free grammar. Each iconic programming element

available for programming is in turn a rule or a terminal symbol of

this grammar. These iconic elements are henceforth named visual

tokens [1]. In contrast to many other approaches (cf. Section 2),

the VRDK supports all major programming constructs as shown

in Figure 4.

Figure 4. Major programming constructs as visual tokens

General programming tasks can be modeled by the visual tokens

without setting a specific technical context. By adding additional

devices or software components to a context view, new visual

tokens become available within the UI. The color scheme of the

visual tokens is predominately chosen to support the user in

identifying specific constructs, such as control constructs or

statements. By extending the technical context, additional

commands and statements become available as shown in Figure 3.

Removing entities from the context implicates the removal of

related commands and statements from the visual token palette.

Therefore, VRDK verifies the model before the removal of any

element takes place. Consequently, any inconsistencies will be

made apparent to the user. If the specific entity and thus the

related visual tokens are used within the model, this conflict must

be resolved before the removal is processed as indicated in Figure

5.

Basic Controls

Constructs

Extended Set of

Control Constructs

Empty Context Extended Context

Expand Context

Reduce Context

Figure 5. Modifying context

It is important to note that the context can be composed and

evaluated without the physical presence of the particular entities

used within the context view. The major benefit in this approach

lies in the possibility of testing and simulating the application

model without any risk or real world consequences.

5. OUTLOOK AND FUTURE WORK
In this paper, we have presented a user interface, inspired by a

well-known design from a popular television series. Two different

kinds of views on context can be observed: The first instance

relates to how the UI abstracts conventional expectations of how

UI elements behave. Their usage appears within the direct context

of the element and the user can easily identify them as interaction

ready buttons, radio buttons, or textboxes. Furthermore, the

VRDK allows users to develop graphical models by composing

rather than writing source code. As a benefit for the user, they can

observe changes within the model immediately. In addition, an

international experiment is planned to evaluate the effectiveness

of this visual programming language and its adoption by students

A. Heil, I. Moradi, T. Weis; LCARS – The Next Generation Programming Context, CAI '06 Proceedings of the International
Workshop in Conjunction with AVI 2006 on Context in Advanced Interfaces, Pages 29 – 31, Venezia, Italy, May 23-26
2006.

who are not formally trained in being programmers who possess

none or very little knowledge of programming methodology. A

further question to be investigated is the significance of the user’s

cultural background in their experience of using the system. Also

related to this is the question of how being oblivious to the

television series4 may affect the usage of VRDK.

6. REFERENCES
[1] Emerging Technologies. Handbook of Software

Engineering and Knowledge Engineering, ed. S.K.

Chang. Vol. 2. 2002: World Scientific Publishing

[2] CBS Studio Inc., STARTREK.COM - Website (2006):

http://www.startrek.com (06.04.2006).

[3] Cycling '74, Max/MSP - Website (2006): (05.04.2006).

[4] Kaplan, N. and Moulthrop, S.: Where No Mind Has

Gone Before: Ontological Design for Virtual Spaces. In

European Conference on Hypermedia Technologies.

1994. p. 206-216.

[5] Knoll, M., et al. Scripting your Home. In 2nd

International Workshop on Location- and Context-

Awareness (LoCA 2006). 2006. Dublin, Ireland.

4 As far as this is possible.

[6] Malone, T.W.: Heuristics for Designing Enjoyable User

Interfaces: Lessons from Computer Games. In

Conference on Human Factors in Computing Systems.

1982. Gaithersburg, Maryland, United States: ACM

Press. p. 63-68.

[7] National Instruments Corporation: LabVIEW - The

software that powers virtual instrumentation - Website

(2006): (07.03.2006).

[8] Rossi, C.: LCARS Standards Development Board -

Website (2006): http://www.lcarsdeveloper.com

(06.04.2006).

[9] Wikipedia: LCARS - Website (2006):

http://en.wikipedia.org/wiki/Lcars (06.04.2006).

http://www.startrek.com/
http://www.lcarsdeveloper.com/
http://en.wikipedia.org/wiki/Lcars

