
A. Heil, M. Gaedke WebComposition/DGS: Supporting Web2.0 Developments With Data Grids IEEE International
Conference on Web Services (ICWS 2008), S. 212 - 215, Beijing, China, 23.-26. September 2008, ISBN 978-0-7695-
3313-1

WebComposition/DGS: Supporting Web2.0 Developments with Data Grids

Andreas Heil
†,*

and Martin Gaedke
†

†
Chemnitz University of Technology

Faculty of Computer Science

Chemnitz, Germany

{firstname.lastname}@cs.tu-chemnitz.de

*
Microsoft Research

European Science Initiative

Cambridge, United Kingdom

v-aheil@microsoft.com

Abstract

The need to create, store, maintain, and share data

as being part of Web2.0 labelled solutions requires the

application of different skills and tools sets. The

growing complexity of these new kinds of applications

leads to cost and time-intensive development life-cycle

because many data design and management decisions

are directly influenced by distribution and semantic

aspects. In this paper we propose the WebComposition

Data Grid Service (WebComposition/DGS) as a

supporting service to address these problems. The

service acts as a highly integrative core component for

data-centric applications, taking traditional SOA-

based business scenarios as well as REST-

architectural style applications in the Web2.0 context

into account.

1. Introduction

A new wave of Web-based technologies allows

users to create rich user experiences on the Web by

building rich internet applications. Functionality and

features known from conventional desktop applications

are brought to the user’s Web client. Traditionally,

these applications access data stored on a dedicated

database that is in general responsible for hosting data

sets for several different applications. This long and

well-established approach provides common

functionality such as presenting dynamic content

generated from the information stored in the database.

For small projects however, this means additional

complexity in hosting and maintaining the database.

An increasing demand for not only creating and

presenting but also linking, maintaining, annotating,

and especially exchanging and sharing this data and

information over the Web leads to a rising complexity

in the engineering process for Web applications. New

concepts must deal with these new “today’s standard”

requirements.

We introduce the first component of the fourth

generation of the WebComposition approach,

considering the most valuable aspects in the various

areas of Service Oriented Architectures (SOA),

Representation State Transfer (REST)-style

architectures [1], within the context of Web2.0 and the

established technologies out of the field of the

Semantic Web. The WebComposition approach was

originally introduced during the WWW6 conference in

1997 as an object-oriented approach for Web

Engineering [2]. Today, the WebComposition

approach abstracts the development and evolution of

Web-based solutions by composing Web components.

The WebComposition approach itself only describes

the development and evolution process, the concept of

composing and reusing Web components. It does not

address the concrete implementation technology.

2. Addressing the Content Perspective

2.1 Web Engineering

Major problems for the Web engineering process

arise through the usage of data driven components.

Subsequently, we will address these major issues and

point out our design solution on how to address these

problems using the WebComposition/DGS approach.

The first problem we experience is the fact that the

various solutions address two different engineering

approaches; one based on business scenarios, the other

within the Web2.0 context. There is no clear

distinction as to which traditional engineering

approaches applies to any of these scenarios. As

depicted in Figure 2 we can distinguish between the

two major bases. Business scenario based solutions

often require integration within an existing SOA

environment, while a REST-architectural style is

typically applied within the Web2.0 context focusing

on simplicity.

A. Heil, M. Gaedke WebComposition/DGS: Supporting Web2.0 Developments With Data Grids IEEE International
Conference on Web Services (ICWS 2008), S. 212 - 215, Beijing, China, 23.-26. September 2008, ISBN 978-0-7695-
3313-1

Metadata

REST-style
architecture

Web 2.0 Business Scenario

Service Oriented
Architecture

Si
m

p
lic

it
y

Database
Functionality

In
tegratio

n

Resource
Based

Metadata

Process
Based

Linked Data

En
gi

n
ee

ri
n

g
R

eq
u

ir
em

en
ts

RPC-style
InterfaceREST-style

Interface
Business-style

Interface

Figure 1. Different engineering approaches with the

need for flexible but simple interfaces.

The proposed solution must provide the capabilities

of application-centric solutions but must not be a

stand-alone approach that makes integration difficult.

Also the data management functionality should be

similar to the ones provided by database driven

approaches however, without the restrictions

mentioned above. One important pattern to apply is the

representation of data that we can explore as we follow

link by link by fetching data. Most data available

nowadays on the Web is not accessible in terms of

linked data [3], yet.

2.2 System Design

The WebComposition/DGS acts as Web component

for the content perspective within the WebComposition

approach. It provides a data and metadata-centric

component for building Web-based applications

designed to meet the requirements for building today’s

Web applications. The WebComposition/DGS consists

of several system components (cf. Figure 3) that can be

easily extended and exchanged. Modifications on these

components are transparent for the existing Web

application using the particular

WebComposition/DGS. The various core concepts of

the WebComposition/DGS are discussed in the

following sections.

2.3 Resources

Within the WebComposition/DGS, the notion of

resources is a central idea. Any resource is understood

as a representation of a concept that can be

manipulated through a distinct set of actions. Each

concept within a WebComposition/DGS instance is

understood as a resource, including the service instance

itself. Within the WebComposition/DGS concept we

identify the following classes of resources:

Data Adapter

Web Service

REST/HTTPXML/RPC SOAP

Storage
Solution

Meta Store

Data Adapter
Data Adapter

Storage
Solution

Storage
Solution

Storage
Solution

Subscription
Bus

RDF/XML

RDF/XML
JSON
…

Export
Filter
Export
Filter
Export
Filter

Import
Filter
Import
Filter
Import
Filter

CRUD
Events

Data

Legacy
Data

RSS

Figure 2. Main WebComposition/DGS components.

Container: The WebComposition/DGS service

instance provides basic functionality to store,

manipulate and easily query resources. The service can

be understood as a container comprising the

functionality to be applied to the enclosed resources.

Information store: The information store is a

logical concept containing a set of related resources.

Depending on the applied technology the information

store could be understood as a list, a CVS-file, a

database or similar. Different implementations of

information stores can be hosted within a single

container at the same time.

Item: Items represent the actual resource stored in

an information store. Items could be described in

XML, a row in a database table, a file, or an element

out of a list. On a logical level, items could contain

further information stores.

Information space: Each resource is addressed by

its unique HTTP-URI and provides metadata as the

foundations for linked data. As a result, each sub-path

of the particular URI, combined with the given

authority, denotes again a distinct URI identifying a

unique resource within the path hierarchy.

2.4 Manipulating Resources

Traditionally, the operations “create”, “read”,

“update” and “delete” (also known as CRUD) are used

to manipulate persistent data. If mapped to a REST-

style like architecture, these operations are

corresponding to the HTTP methods POST, GET, PUT

and DELETE. Following [4], the methods are defined

within the WebComposition/DGS as follows.

POST: The POST method is used to create a new

resource on the service using the request URI. Within

the WebComposition/DGS the post method is strictly

used to create new resources in the form of information

stores. The URI used for the request must not exist yet.

A. Heil, M. Gaedke WebComposition/DGS: Supporting Web2.0 Developments With Data Grids IEEE International
Conference on Web Services (ICWS 2008), S. 212 - 215, Beijing, China, 23.-26. September 2008, ISBN 978-0-7695-
3313-1

GET: The GET method is used to retrieve whatever

resource is identified by the request URI. The GET

method must be accomplished by the service without

any side-effect on the resource.

PUT: In contrast to the POST method, the PUT

method is used to modify information store resources.

The enclosed information is added to the resource the

request URI identifies or existing items are updated. If

the request URI point to an information store, the

enclosed item is added to the specified information

store, otherwise the change is applied to the item, the

request URI points to.

DELETE: The DELETE method requests that the

resource identified by the request URI is removed as

such. The DELETE operation could be applied to items

as well as information stores as a whole.

A core feature of the WebComposition/DGS is its

triple interface: the REST-style driven HTTP-based

interface introduced before, an RPC-style driven

interface operating on a straightforward RPC interface

offering CRUD capability but also a complex business-

style driven interface supporting complex SOAP-

messaging, e.g. applied in document-driven business

scenarios based on WS-Transfer and WS-Addressing.

2.5 CRUD Events – Publish-Subscribe for

Linked Data

Adopting the terminology of the WS-Notification

specification [5, 6], we provide an insight into the

occurrence of events within the information space

processed by the subscription bus (cf. Figure 3).

Creation, modification, deletion or a simple request of

a resource could raise notifications. The container or

information store dispatching such a notification

appears as a notification producer. The consumer

receives the notification and could react accordingly.

Consumers provide filters (not to be confused with

WebComposition/DGS import and export filters) to

express the particular interest in events. Filters are

processed to decide whether to send a notification, or

not, to the consumer by the notification for events:

create, read, update and delete (CRUD). This

information is called a subscription and can be seen as

triple (producer, consumer, filter). Each container

provides an individual information store for these

subscriptions. The notification producer is identified

by its URI, the producer by its respective call-back

URI. Filters are stored as metadata and thus identified

by their URI in the information space. Each

subscription states a new resource and is addressed by

its URI as well within the information space.

Following the paradigm of linked data, this concept

allows to step through this information. A history of

CRUD events is finally provided as RSS feed through

the subscription bus.

3. WebComposition Data Grid Service

3.1 Extensible Core Architecture

The three core interfaces originate the

WebComposition/DGS endpoints depending on its

client application and form a unified architectural

model. These interfaces provide the core functionality

to store, process, and query data and its respective

metadata. This extensible core architecture provides

two major components proposed to be extended: The

data adapter provides the key interface to the data

storage. The default adapter provided by the

WebComposition/DGS is an XML-based data adapter

that manages information stores and related meta-

information as RDF data based in the file system. Each

data adapter can provide a set of according filters for

presenting and receiving metadata. Both the data

adapter and the corresponding export filters to be used

for a WebComposition/DGS instance are configured in

a corresponding configuration file.

3.2 Metadata

The initial metadata created for a new information

store is based on the Dublin Core Meta Initiative [7]

and includes all fifteen elements endorsed by the

related standards
1
. These common metadata attributes

provide the fundamentals for the metadata model. This

standardised information is supplemented by additional

WebComposition/DGS specific metadata, based on our

previous work and includes: Information about the

latest modification of the resource, the current approval

status of the resource, a custom index if required,

information about unit costs and types as well as an

interaction transaction index (ITX) meta-attribute to

indicate the resource’s current processing status.

Updating resources appears to be one of the most

crucial aspects to be considered carefully in REST-

style architectures. It is not obvious to a user if a

particular resource was updated after he requested a

resource and modified it locally. Updating the resource

might lead to a lost update in the resource. The ITX

therefore provides a stateless mechanism to track

updates on resources. When a resource is updated a

new ITX is calculated and stored within the metadata,

submitted along with the response of a GET request for

1
 ISO Standard 15836-2003 of February 2003

 NISO Standard Z39.85-2007 of May 2007

 IETF RFC 5013 of August 2007

A. Heil, M. Gaedke WebComposition/DGS: Supporting Web2.0 Developments With Data Grids IEEE International
Conference on Web Services (ICWS 2008), S. 212 - 215, Beijing, China, 23.-26. September 2008, ISBN 978-0-7695-
3313-1

resource and must be returned with the corresponding

PUT request when the resource is updated on the

server. If the ITX for the particular resource is

different, the update is refused. Otherwise the update

transaction is processed and the ITX is updated.

All settings for a certain information store

(including data adapters, input and output filters) can

be configured. Therefore, multiple data adapters can be

mapped to different content types allowing a single

information store to deal with heterogeneous data at

the same time.

4. Lessons Learned

A first version of the WebComposition/DGS has

already been fully implemented based on Microsoft’s

.NET technology. The existing version has been tested

on Web servers on different Windows platforms (XP,

Vista, Server 2003 and Server 2008). The test

applications formed a heterogeneous environment

where Web-based applications and also desktop clients

have been used to successfully accessing the different

endpoints of the implementation.

Beside the default XML-based data adapter, a

prototypical implementation of an HTML data adapter

was developed. This adapter allows creation and

modifying of resources in the form of HTML Web

pages. In contrast to a WebDAV based solution the

WebComposition/DGS approach enables the user to

benefit from the business-style SOAP interface to

create and modify resources, even accessing endpoint

where no direct HTTP connection is given.

The meta store was initially designed to be a highly

flexible component. In a preliminary version users

have been able to create and store meta-information in

any desired way (including RDF). However, it became

obvious that that particular metadata was often only

meaningful to the creator of the information and due to

its heterogeneity it was neither widely reusable nor

suitable to follow the concept of linked data. The

solution to restrict the internal representation of

metadata based on the RDF standard provides more

potential in processing and linking of the meta-

information. The usage of additional filters for

importing and exporting the data in user specific ways

allows for the processing of the data into any desired

format.

5. Conclusion and Further Work

The WebComposition/DGS is based on the

experience of our previous research in applying the

WebComposition approach and provides a highly

flexible, yet easy to integrate solution for building

data-centric Web applications. The

WebComposition/DGS especially considers the need

to address metadata and linked data, and provides an

implicit mechanism that reduces the effort of dealing

with these kinds of information.

The first version of the WebComposition/DGS is

currently applied in various research projects and

within one commercial project using it as a core

component. Connecting it to idFS [8] will provide a

sophisticated WS-* conform security concept.

Subsequently, we extend the security concepts

especially to the REST-style driven interface bearing in

mind to keep the solution as simple as possible.

A Web-based demonstration application and

corresponding documentation can be found at

http://www.WebComposition.net/dgs/.

6. References

[1] R. Fielding, "Architectural Styles and the

Design of Network-based Software Architectures",

PhD Thesis, University of California, Irvine.

[2] H.-W. Gellersen, R. Wicke, and M. Gaedke,

"WebComposition: An Object-Oriented Support

System for the Web Engineering Lifecycle", in 6
th

International World Wide Web Conference, Santa

Clara, CA, USA, 1997, pp. 1429-1437.

[3] T. Berners-Lee, "Linked Data" - Website

(2006):

http://www.w3.org/DesignIssues/LinkedData.html (02-

20-2008).

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, P.

Leach, L. Masinter, and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1" - Request for

Comments: 2616 (1999):

http://tools.ietf.org/html/rfc2616 (02-18-2008).

[5] D. Chappell and L. Liu, "Web Services

Brokered Notification 1.3 (WS-

BrokeredNotification)", 2006.

[6] S. Graham, D. Hull, and B. Murray, "Web

Services Base Notification 1.3 (WS-

BaseNotification)", 2006.

[7] L. Andresen, "Dublin Core Metadata Element

Set, Version 1.1: Reference Description" - DCMI

Recommendation (2004):

http://dublincore.org/documents/dces/ (02-18-2008).

[8] M. Gaedke, J. Meinecke, and M. Nussbaumer,

"A Modeling Approach to Federated Identity and

Access Management", in 14
th

 International World

Wide Web Conference (WWW'05), Chiba, Japan, 2005,

pp. 1156-1157.

http://www.webcomposition.net/dgs/
http://www.w3.org/DesignIssues/LinkedData.html
http://tools.ietf.org/html/rfc2616
http://dublincore.org/documents/dces/

