
M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

GET /dgs HTTP/1.1

Host: www.WebComposition.net

Martin Gaedke
1

1
Chemnitz University of Technology, Germany

Faculty of Computer Science

{firstname.lastname}@cs.tu-chemnitz.de

Andreas Heil
1,2

2
Microsoft Research, UK

Computational Science Group

v-aheil@microsoft.com

Abstract

During the last years, the asset costs for storage

have been decreasing continuously. Coincidentally, the

demand to create and publish data in the Web has

grown in an unprecedented manner. Within the

Web 2.0, the user became an active part by creating,

publishing, changing and annotating data and its

related metadata in a wide variety of new kinds of

applications. Many data management but also

architectural decisions for such applications are

driven by distribution and semantic aspects. In this

paper, we present how the WebComposition Data Grid

Service (WebComposition/DGS) emerges new kinds of

data-centric applications as a REST-architectural style

component within the context of Web 2.0 but also

satisfies requirements within traditional SOA-based

business scenarios.

1. Introduction

Within the idea of Web 2.0, data is a substantial

factor [1]. Architectural decisions are based on

distributed and semantic aspects about data, its related

metadata and its overall availability but also

accessibility. Competitive advantages arise through

data, the way it is generated and the way it is made

available. A typical characteristic of the data is that a

large amount of it is created by the users themselves.

Some of the best known and commonly used

representatives are eBay auctions, Amazon reviews,

Flickr photostreams, Last.fm scrobblings or Twitter

feeds. This data is not created by an editorial team but

rather by the users directly. Consequently, this has led

to a vital change of the digital identity of users in the

Web. Originally, the user’s homepage was the one and

only place where all information was stored and

published, since it was the only place where the user

typically gained write access in the Web. Nowadays,

the digital identity of a user is scattered all over the

Web. Photos are hosted with Flickr, news articles are

posted on a weblog such as Blogger, microblogging

and instant messaging is achieved through Twitter

feeds, links are archived within del.icio.us and contact

details are stored in social network portals such as

LinkedIn or Plaxo (see Figure 1). Various portals such

as Facebook or MySpace provide functionality to mesh

up this scattered data into one single Web page or a

Web site as substitution for the personal homepage.

While the data of a user formerly resided on this

dedicated, central place where he was allowed to create

data, it is now conflated from multiple data providers,

possibly stored in data formats the user has no direct

influence on.

Figure 1. Digital identity through multiple data providers

The usage of this distributed, heterogeneous data

sources is rather limited. If ever, each data provider

offers a different way of interacting with the stored

data in other applications. This circumstance makes the

efficient development of applications based on those

data sources often very unpredictable, if not

impractical at all. The question now is how to interact

with the data, how to link the data from the various

data sources in a meaningful way to each other and

how to reuse this data in other applications.

In this paper we discuss the WebComposition Data

Grid Service (WebComposition/DGS) component. Our

main contribution here lies in its capability to

implicitly manage metadata based on Semantic Web

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

standards as first-class constructs. We will especially

focus on the capability to use this metadata and to

make use of the concept of linked data within different

architectural styles. Subsequently, we discuss the

extensible core elements of the WebComposition/DGS

that allow a high degree of reuse to reduce

development costs of systems dealing with metadata,

irrespectively of the underlying architecture style.

2. Motivation and Background

2.1. Example Scenario

During a code review, Clark, a software engineer in

an international software company came along with an

idea for a tool to increase the productivity within his

team. To make this tool available to all team members,

he decided to make this tool available within the

company’s intranet. He set up a Web server and wrote

this little, Web-based application in his spare time. At

this time, the Web-server’s address was known only by

his team members and Clark did not care a lot about

security. Also, the tool stored all the data in plain text

files, since Clark simply did not want to spend too

much time on this.

Several weeks later, during an internal architecture

review of the company’s latest product, he accessed the

tool via his Web browser to show the information that

was requested from him. Several colleagues became

very curious about that tool, they had never seen

before. They realized the added value by this tool and

asked Clark, if their teams might use it as well. Clark

was flattered and agreed. He also realized that the tool

was not capable of dealing with multiple data sets from

different teams. So he spent a remarkable portion of his

spare time to change the tool’s way of dealing with

data. At this point he thought a database might be a

good solution to dealing with the increasing amount of

data.

Once he was contacted by the manager of the

internal tools division, who asked Clark to make this

tool available to all employees within the company.

This increasing degree of awareness also required

some additional functionality to deal with security

aspects since not all users should have been able to see

all the projects managed by this tool. Clark had to

implement additional functionality. Luckily, a

developer from the internal tools division supported

Clark to modify the tool to use the company’s internal

user directory.

During the annual review, the company realized

that the tool caused an incredible increase in

performance within the various product groups. The

management thus realized the potential of this tool and

that it might be an appropriate supplement to the

company’s portfolio of Web-based services. Hence,

they decided to offer this as a new service. Based on

the company’s user directory, a fixed integration with

the storage solution, a data structure that was fitted

with the company’s internal operations and the

integration into several in-house products, the tool had

to be redesigned and newly developed, which caused

not to be underestimated costs for the company. The

results were the great idea behind the tool and a well

designed system that however, did not succeed on the

market for a long time.

The difference was indeed, that the tool, as long as

developed and used in-house, underwent a permanent

evolution. Since it was Web-based, it is not possible to

roll-out new versions of the tool on a regular basis.

Changes have been introduced gradually. Hence, it

adapted to new requirements and technologies. While

Clark was aware of other in-house products and their

related data formats and metadata, he developed plug-

ins that enabled the tool to connect to various other

tools used by the product groups. The service offered

by the company was however not capable to integrate

with many other tools. In fact, the easy extensibility

and in particular, the integration with other tools, was

the secret of the success of Clark’s tool.

2.2. Data & Semantic

Based on [2], we define a catalogue of essential

aspects and relations among these structures to be

considered when designing a data-centric Web-based

application.

Data: The creation, maintenance and handling of

data must be easy and reliable. Storing the data in a

corresponding data storage and simple querying the

data are key features, which the solution must provide.

The underlying technology must not restrict the user in

terms of content to be stored and should provide the

possibility of different views on the data. Changes or

further developments in the underlying data processing

and storage solutions should not affect already

established applications based on the service.

Systematic creation and structuring of data:
While in the context of Web 2.0 flexibility is eligible,

the systematic creation of structured data is required to

address business-scale scenarios, where the integrity of

data is indispensable. In certain cases, the user might

be forced to adopt a specific structure for the data, e.g.

for constraining structures and content or for validating

the data. The systematic creation and structuring of

data, thus allows defining how symbols can be

combined.

Metadata: Metadata is required to describe the

data itself. It must be provided in a machine-readable

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

format. The metadata must provide information for

understanding what one needs to know about data

received from other sources, in order to proceed

intelligently with the data. Also metadata is required to

provide meanings of syntactically valid collections of

data.

Linked Data: Data needs to be identified,

published and linked. Based on its metadata, useful

information has to be provided for connecting data.

Similarly appears the idea of links in HTML

(especially automatically generated trackbacks and

pingbacks in the weblog domain): data and data clouds

must be connected for lookups and traversing the data.

Metadata is thus required to step through the data.

Security: Security aspects are important for

applications within a personal scope up to business-

scale scenarios. Applications dealing with personal or

business data must guarantee both the integrity of the

data itself and the protection of privacy. The absence

of a security mechanism, e.g. in a business

environment, might result in financial risks for the

particular company and is thus a key requirement for

the particular solution.

Reuse and Integration: The reuse of the

components includes easy deployment, extensibility of

the system, and the avoidance of one-off efforts. How

easy can the solution to be used in already existing

solutions and how much effort is required to achieve

this, are key factors, especially in the Web 2.0 context,

which must be considered carefully. It is important that

a solution supports the reuse of existing data and

provides capabilities needed to integrate components

within the context of another application and within

different architectural styles.

3. The WebComposition Approach

The WebComposition system was first introduced

during the WWW6 conference in 1997 [3] as an

object-oriented approach, especially for the discipline

of Web Engineering [4] and in contrast to the

discipline of traditional Software Engineering. The

WebComposition approach was continuously

developed up to today, where it abstracts the

development and evolution of Web-based applications

that are composed out of Web components. The

WebComposition approach describes only the

development and evolution process, the concept of

composing and reusing Web components, but does not

address the concrete technology applied to create the

solution.

The Web components used to create a Web-based

solution address different perspectives of an

application: the content-perspective includes aspects

related to data and semantics, the UIX perspective

contains aspects related to the user interface experience

and the DSA perspective contains especially aspects

related to distributed system and architecture behavior.

The two core concepts of the WebComposition

approach focus especially on two different perspectives

of reuse. The development of Web components for

reuse focuses on the creation of units that implement a

certain perspective or corresponding aspects and, on

the other hand, the development of solutions by reusing

existing Web components to create complete Web

applications/systems by composing existing Web

components. To develop the WebComposition/DGS, as

a central component of the 4
th

 Generation of the

WebComposition approach, we also applied the

lessons learned from our previous work, the

WebComposition Service Linking System and the

therefore developed CRUDS-Service [5, 6].

3.1. WebComposition/DGS

The WebComposition/DGS is especially designed

to meet today’s requirements for developing

distributed application in the Web, especially following

the concept of Representational State Transfer (REST)

architecture style. REST refers a set of constraints that

define the distributed architectural style [7]. Resources

are addressed using unique identifiers to which access

is given through a uniform interface. In contrast to a

service-oriented architecture, manipulation of

resources is performed through stateless interaction

with their representations. The most common REST-

based architecture is the Web itself, using the HTTP

protocol to provide a uniform access to resources [8].

The WebComposition/DGS allows to put new ideas

into practice very easily by using these REST

principles but also common SOA-based approaches.

We find multiple interfaces for different scenarios:

while facing the particularities of Web 2.0 and taking

into account the standards of the Semantic Web, the

WebComposition/DGS is furthermore designed to be

also applied in traditional business scenarios.

Figure 2. WebComposition/DGS corner pillars

REST

B
u

si
n

es
s

SOAP
XML
RPC

DGS

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

The core interfaces (cf. Figure 2) provided are (i) a

HTTP-based interface to be used within REST-like

architecture styles, (ii) a simple XML/RPC interface to

be used in simple ad-hoc implementation and (iii) a

SOAP interface, supporting document/literal SOA-

based architectures suitable for most business

scenarios.

Designed to be suitable for a variety of application

scenarios, the WebComposition/DGS comes as a

modularized component [9] that can be easily extended

and adapted for specific needs. Before showing

example scenarios where the WebComposition/DGS is

already successfully applied in productive system, we

discuss the key functionality of the

WebComposition/DGS regarding the various aspects

already identified in Section 2.2.

4. WebComposition/DGS Internals

In this section we will discuss the core features of

the WebComposition/DGS. We will especially focus

on the usage within REST-like architecture styles;

however, the described functionality is accessible also

through the provided SOAP and XML-RPC interfaces.

4.1. In Direct Touch with the Data

Regardless of whether we are facing a service-

oriented architecture [10], a REST- like architecture

style [7] or merely an unconstrained architecture, we

always deal with the concept of resources when

looking at a Web-based application/system. Therefore,

we enforce a strict usage of Uniform Resource

Identifiers (URI) [11] within the

WebComposition/DGS. Each resource created,

regardless whether data or metadata, can be accessed

via its strictly composed URI such as depicted in

Figure 3 below.

Figure 3. WebComposition/DGS URI concept

Each WebComposition/DGS service represents a

container for one or many information stores. An

information store is the access point, at which users

can add and query data. One could understand an

information store as a list or set, where related data is

logically grouped together. Within an information

store, each data item stored in it can be accessed via its

own URI. For each of the concepts (container,

information store and data item) the key path segment

meta can be concatenated to access the related

metadata.

4.2. Create and Structure Data

In some ad-hoc scenarios, the user might create

data in a quite easy fashion as Clark did in our example

during his initial approach in Section 2.1. On the other

hand, sophisticated business scenarios might require

the creation and validation of structured data.

The WebComposition/DGS component supports

both scenarios: Data is processed by a so-called data

adapter (cf. Figure 4). This exchangeable component

of the WebComposition/DGS is the core element for

creating and manipulating data.

Figure 4. WebComposition/DGS data adapter concept

The concept of the data adapter is based on two

major features: (i) Extensibility allows to create own

data adapters for new kinds of data. For the current

version of the WebComposition/DGS, data adapters for

XML and HTML are already provided. Additional data

adapters however can be developed and specified via a

configuration file (cf. Figure 5). (ii) Customization of

data adapters via input and output filters. Filters

specify the format of data as well as the kind of

accepted data. Additional filters can be developed and

specified via the configuration file. Hence, the system

can be simply reconfigured if new requirements arise.

This even allows specifying an output format different

from the original input format and thus provides a high

flexibility regarding the data representation.

Transforming the data to or from the internal

representation of the data adapter is incumbent upon

the corresponding filter.

The provided XML data adapter supports creation

of both, structured and unstructured data. As such, ad-

Http-URI

http://vsr-data.cs.tu-chemnitz.de/

Container Data Itemhttp://

http://vsr-data.cs.tu-chemnitz.de/meta

http://vsr-data.cs.tu-chemnitz.de/people/heil

Meta

Meta

http://vsr-data.cs.tu-chemnitz.de/people/heil/meta

http://vsr-data.cs.tu-chemnitz.de/people/meta

Meta

http://vsr-data.cs.tu-chemnitz.de/people

Information
Store

HTTP-URI

Data Adapter

Data only

Data + Schema

Storage solution

Input Filter

Output Filter

Meta Connector

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

hoc scenarios can be realized very easily. Regarding

the interface for REST- like architecture style, the

HTTP verbs are used as follows:

GET queries a resource at the given URI. The

representation of the resource depends on the output

filter specified in the configuration file of the

WebComposition/DGS instance. By specifying a

accept HTTP-header in the corresponding HTTP-

request, we indirectly specify which data adapter to

use. However, the concept of the data adapter is

transparent to the client that simply requests any

resource from the service. If no accept header is

specified, the WebComposition/DGS applies the

default data adapter.

POST allows for the creation of new information

stores on non-existing URIs. The XML data adapter,

which is the default adapter provided in the current

WebComposition/DGS implementation, accepts a XSD

schema send along with this request. The schema is

then used to validate the data added to this newly

created information store. Additional settings regarding

the validation of the data can then be applied by adding

further metadata as we will see in Section 4.3 below.

New data items are added using PUT on the

information store’s URI. The content-type specified in

the HTTP-header specifies which data adapter is used

to create the data item. Data items, but also complete

information stores, can be deleted by sending DELETE

to the corresponding URI.

The SOAP interface can be used for

document/literal SOA to achieve the same

functionality. However, the functionality here is

contained in the SOAP message, rather than in the

protocol semantic. To allow easy integration with

already existing SOA systems, a SOAP adapter is

specified equivalent to the procedure of the data

adapter connecting to data adapter (cf. Figure 5).

Hence, the WebComposition/DGS can be easily

customized to fit into already existing SOA-based

systems, while reusing existing components within the

service.

<webComposition>

 <dataGridService>
 <dataAdapters>
 <dataAdapter

 type="WebComposition.Dgs.Content.Data.XmlDataAdapter,

 WebComposition.Dgs.Content,

 Version=1.0.0.0,

 Culture=neutral,

 PublicKeyToken=null"

 inputNotation="TEXT/XML"

 outputNotation="TEXT/XML"

 contentType="text/xml">

 <metaData inputNotation="RDF/N3"

 outputNotation="RDF/XML"/>

 </dataAdapter>

 ...

 </dataAdapters>

 ...

 </dataGridService>

</webComposition>

Figure 5. Example data adapter configuration

4.3. Metadata is Data

Following [12], we understand metadata as first

class resource within the WebComposition/DGS.

Therefore, metadata can be accessed via its dedicated

URI. Data and metadata are treated as open data and

open metadata (i.e. you have access to all data and

metadata you create).

By default, all metadata is stored in the format of

the Resource Description Framework (RDF). This

comes in handy for two reasons: at first, due to the

strict URI concept within the WebComposition/DGS,

each resource (including metadata) is identified by its

URI. Therefore, each resource can appear in a RDF

triple as subject and/or object. This especially allows

us to use metadata to describe metadata again.

Secondly, RDF data is machine readable and

accessible by a wide audience. Also the complexity of

the metadata is not restricted, e.g. compared to the

Exchangeable Image File (EXIF) metadata [13]. It is

useful, that additional information can be simply added

by inserting additional RDF triples. By default, each

created resource is supplemented with the Dublin Core

[14] metadata, stored as RDF triples as well. These 15

standardized attributes are used to describe and classify

Web resources using common characteristics of

resources. This information base is supplemented by

the WebComposition/DGS metadata vocabulary. This

data differs for each resource type and can be extended

through data adapters. The container instance provides

information about the contained information stores, an

information stores again provides additional

information about the contained data items such as

content-types and item count. Additional metadata

might be generated through the data adapter processing

the data. For instance, it might be useful to extract

EXIF metadata contained in images and store it

directly as metadata with the corresponding resource

when uploading digital photos to a

WebComposition/DGS service.

Figure 6. WebComposition/DGS information stack

Resource Settings

Resource

Dublin Core Metadata

WebComposition/DGS
Meta Vocabulary

CRUD-Event
Metadata

User-Specific Metadata

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

Figure 7. WebComposition/DGS component interactions

A further aspect within the WebComposition

information stack (cf. Figure 6) is the CRUD-Event

metadata. CRUD stands for create, read update and

delete and describes the core operations performed on

data [15]. Each operation on a resource is thus tracked

and stored as CRUD metadata. This is especially

helpfully in addressing the question of provenance,

since the representation in RDF is already suitable to

process the information [16]. If we consider this, the

CRUD-Event metadata also addresses the issues of

provenance in SOA-based systems [17] in general.

Easy access to the events is granted through CRUD-

Event RSS feed as depicted in Figure 8. By publishing

the events to the feed, arbitrary clients can subscribe to

the feed and monitor activities on the data. As

metadata is understood as a first class resource,

additional, user-specific metadata can be added in the

same way as data itself. Also for metadata, we can

specify different input and output filters (cf. Figure 5).

By default, the WebComposition/DGS supports

RDF/XML and Notation3 (N3) as metadata formats.

Additional filters can be created and specified.

Figure 8. CRUD-Event RSS feed

Finally, the WebComposition/DGS information

stack provides the possibility to store settings for

resources, such as the service itself. Settings usually

describe the behavior of a system or a resource. Since

everything within the WebComposition/DGS is

understood as a resource, settings are stored as

metadata describing this resource. We will

subsequently discuss the usage of metadata for settings

based on two common settings of the

WebComposition/DGS.

As the WebComposition/DGS supports the creation

of structured data, the XML data adapter supports the

validation against XSD schemas (cf. Section 4.2). It is

possible to change the scope of the validation by using

the settings to no validation at all, validating the

submitted data (a-priori validation of the data) or

validation of the complete XML structure (a-posteriori

of the data after inserting into the XML structure). The

default validation, applicable for any newly created

information store, is set in the configuration file as

seen in Figure 9 below.

<webComposition>

 ...

 <dataGridService>

 <defaultSchemaScope scope="None"/>

 ...

 </dataGridService>

 ...

</webComposition>

Figure 9. Default schema validation

Using the N3 input filter, the default settings can be

changed by putting the metadata through a simple

HTTP-request to the information store’s URI

containing the N3 statement in Figure 10 below. By

adding this metadata, we can simply set the validation

for a particular information store to the a-priori

validation described above.

Data Adapter
1

Data Adapter
m

…

Meta Store Subscription
Bus

Data Adapter
2

Non DGS
Web Service

…

SOAP Adapter
1

SOAP Adapter
2

SOAP Adapter
n

HTTP Client

WebComposition/DGS

Web Browser
Native

DGS Client

CRUD-Event
RSS Feed

CRUD-Event

CRUD-Event
RDF/XML

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

@prefix dm: http://www.webcomposition.net/dgs/meta/.
<http://vsr-data.cs.tu-chemnitz.de/people>

dm:schemaScope

„Element“.

Figure 10. Schema validation metadata in N3 notation

As we can see in Figure 3, each data item within an

information store provides its own URI. To address

data items within a information store we apply the

concept of URI templates [18]. To illustrate this

concept we assume that the XML data for the

information store http://vsr-data.cs.tu-

chemnitz.de/people is structured as seen in Figure 11
below.

<?xml version="1.0" encoding="utf-8"?>

<people>

 <person>

 <name>Heil</name>

 <firstName>Andreas</firstName>

 <title>Dipl.-Inform.</title>

 <office>1/B204</office>

 ...

 </person>

 <person>

 <name>Gaedke</name>

 <firstName>Martin</firstName>

 <title>Prof. Dr.Ing.</title>

 <office>1/B319</office>

 ...

 </person>

 ...

</people>

Figure 11. Example information store data

In our example we want to address the data items

(i.e. the person elements) via URIs such as http://vsr-

data.cs.tu-chemnitz.de/people/Heil and http://vsr-

data.cs.tu-chemnitz.de/people/Gaedke. To do so, we

use an URI template that specifies the URI we require

as well as a XPATH expression mapping the requested

data to the specified URI. The corresponding URI

template, as it is submitted, is shown in Figure 12.

@prefix dm: http://www.webcomposition.net/dgs/meta/.

<http://vsr-data.cs.tu-chemnitz.de/people>

dm:urlTemplate [meta:url "people/{value}";

dm:xPath "/people/person[name='{value}']"].

Figure 12. URI template in N3 notation

It is important to know that all URIs specified for

resources serve also as unique identifiers to address the

resource in a SOA-based scenario using e.g.

document/literal SOAP.

4.4. Linking Data and Metadata

By combining data and metadata we address the

challenges identified in Section 1 how to link data to

each other in a meaningful way. The concepts

introduced so far help us in achieving this goal. If we

apply the WebComposition/DGS as component in a

merely SOA-based system, each resource is still

identified by its own URI. Hence, all resources can be

referenced transcending the boundaries of information

stores when creating linked data [19].

Data as well as metadata are combined by

specifying a XSL transformation. A depiction of the

process how the data is combined is given in Figure 13.

Hence, not only the metadata but also the data itself are

provided in a machine-readable format. Data from

different information stores as well as the

corresponding metadata is combined by specifying a

XSL transformation to combine and format the data.

Figure 13. WebComposition/DGS linked data

For instance, we can use the contact details out of

our information store for people seen before, add

metadata such as geospatial information and combine

this information with project and publication data

stored, to create machine-readable Friend-Of-A-Fried

(FOAF) files using the RDF technology [20]. For both

projects and publications we already use location

information (e.g. about the project or conference

location) that again can be used for creating the linked

data. As there is no common security concept for

REST-like architecture styles, various approaches are

applied for different scenarios. In the majority of cases

we will see the usage of HTTPS using SSL encryption

for point-to-point encryption and authentication. The

Backpack API [21] extends this by sending a 40-byte

SHA1 hash token along with the request content to

authenticate the user. The Amazon S3 [22, 23] also

uses a standard challenge-response approach by

sending a token, the so-called AWS Access Key ID.

along with the HTTP-request as a supplementary

HTTP-header. In addition, a signature in the form of a

HMAC-SHA1 [24] token is created and included to

ensure authentication of the request. Both, the AWS

Access Key ID as well as the signature are also used

for SOAP-based invocation of the service.

Data Adapter

RDF/XML

Meta Store

Metadata Data

XSL Transformation

RDF/XML
from further

Information Store

Linked Data

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

Figure 14. Example for creating linked data

4.5. Reuse with Security for REST and SOA

As you learned, reuse is the central idea within the

WebComposition approach. Therefore, we enable

another WebComposition component, the Identity

Federation System (idFS), as an optional security

component along with the WebComposition/DGS. The

idFS provides a well proved security infrastructure

based on the active and passive requestor profiles of

the WS-Federation specification [25]. The idFS

provides mechanisms to access Web services and

resources through security token service access control

and identity providers, single sign on and federating

components, i.e. accessing resources across

organizational boundaries [26, 27, 28].

The idFS system is based on a role based system

where permissions and restrictions are based on a fine

grained security system. While idFS follows the WS-

Federation specification and thus can be applied

immediately to SOA-based scenarios, we use SSL

encryption for REST-like architecture styles using the

HTTP protocol. The idFS allows us to define groups

and to issue tokens for special purposes. This includes

for instance granting rights to certain resources, rights

for a certain time or rights for a certain number of

actions. Issued tokens describe the roles a user is

member of. For the WebComposition/DGS we specify

the rights following a bottom-up approach. Rights are

defined for any anonymous request first, which means

when a request does not contain any tokens at all. In

the following, we define additional users and roles to

grant specific rights on resources. Hence, you can, for

example, hand out trial access (such as access limited

in time or number of read/write requests). The

important point here is to realize the idFS as an

optional component. If not required, the

WebComposition/DGS can be used without any

security concepts at all. If required, the idFS can be

deployed and configured afterwards. This can also

happen during the evolution of the system as it was

required within our initial example in Section 2.1

where Clark’s had to implement user access.

The idFS is currently deployed and actively used on

various sites such as the IT-Management and Web

Engineering Research Group’s site [29], the Web

Engineering community portal [30] as well as the

portal of the International Society for Web Engineering

[31]. Resources offered by WebComposition/DGS

instances deployed within further organizations thus be

made accessible to the sites already supporting idFS in

a very convenient way, without the need of creating

and managing additional user profiles or logins.

This introduced concept allows us to use one

WebComposition/DGS instance in both SOA-based

scenarios as well as in Web 2.0 scenarios based on a

REST-like architecture styles. Access to the data is

thus not restricted due to any architectural decisions.

5. Related Work

Several commercial approaches currently become

noticeable to deal with the new requirement of

creating, storing and publishing large amounts of data.

The Amazon S3 [22, 23] and the Amazon SimpleDB

[32] provide functionality to store, process and query

data over the Web. The services provide the basic

functionality of databases. Both services provide

SOAP and HTTP interfaces for service-oriented and

REST-like architecture styles. While designed for

relatively small amounts of data, the SimpleDB is also

publicized as storage for metadata for a corresponding

Amazon S3. While the WebComposition/DGS is

designed as a Web component, the Amazon S3 as well

as the SimpleDB are hosted exclusively by the

corresponding provider while the service itself is sold.

In contrast, Microsoft’s ADO.NET Data Services

[33] is an extension to Microsoft’s .NET Framework

and can be understood as additive component to the

.NET Framework. The ADO.NET Data Services

include a set of patterns to interact with data by using

HTTP, addressing resources and linking data among

services. This approach lines up well with the REST-

like architectural style. In addition, the ADO.NET Data

Services also provides a RPC-like interface. Being one

of the approaches, which meets the requirement of a

REST-like architecture style as defined in [7] the most,

the ADO.NET Data Services are on the other hand

especially designed to connect to Microsoft’s SQL

Server and are thus bound to a single data provider.

 Backpack [21] also provides basic functionality to

store and maintain data in the form of lists such as

notes, images and files on the Web with a strong focus

on visual representation. A HTTP-based interface is

complemented by a set of wrappers for multiple

Image from
Information Store

Images

Contact from
Information Store

People

FOAF File
generated

Project data from
Information Store

Projects

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

programming languages to access the service. Similar

to Amazon’s approach, Backpack is merely offered as

a commercial service. It is also not designed to support

SOA-based scenarios as the WebComposition/DGS

does.

The WebComposition Service Linking System

CRUDS service [5, 6, 34] is a generic, SOAP-based

service to store, manipulate and publish data. As a

predecessor of the WebComposition/DGS, many ideas

influenced the design of this component. However, the

CRUDS service does not provide the flexibility of the

WebComposition/DGS and is a purely SOAP-based

Web service.

Menagerie [35] is a relatively young software

framework targeting similar issues as the

WebComposition/DGS, such as combining data

scattered across multiple data providers in the Web and

manipulating this data with standard applications. In

contrast, this approach focuses on personal data

specifying the Menagerie Service Interface and the

Menagerie File System. The WebComposition/DGS

however also targets business-scale scenarios and

provides a higher flexibility. As such, the support of

idFS as security infrastructure component for the

WebComposition/DGS is optional. The

WebComposition approach does not restrict the system

to any of its components. Google’s OpenSocial [36]

focuses especially on social network data and defines

an API that allows any social network platform to host

third party social applications. Also, the Goolge Data

API [37] defines a more general approach by providing

a set of simple APIs for reading and manipulating data

on the Web.

While some of the features of the

WebComposition/DGS are closely related to the

previously mentioned systems, it is unique with its

combination of implicit usage of metadata,

extensibility through its component based approach,

and transparent usage within different architectural

styles suitable for both, REST-like architecture style

based systems in the context of Web 2.0 and SOA-

based business scenarios.

9. Summary and Outlook

In this paper, we presented the WebComposition

Data Grid Service (WebCompostion/DGS) as the first

component of the 4
th

 generation of the

WebComposition approach. The data dispersion within

the Web, e.g. seen when personal data is used to create

ones digital identity, introduces new issues in

maintaining and meaningfully linking data on the Web.

The WebComposition/DGS addresses these issues with

the consequent application of Web technologies, WS-*

specifications, standards from the semantic Web and a

design that provides a high flexibility in terms of reuse,

extensibility and customization. The

WebComposition/DGS appears to be a component

suitable for REST-like architecture and SOA style-

based systems and even allows integrating systems of

different architecture styles. We showed the Web

component-based approach based on the Identity

Federation System (idFS) that provides a well-

established security infrastructure component for the

WebComposition approach.

Beside using the WebComposition/DGS as central

component of the Distributed and Self-organizing

Systems Group at Chemnitz University of

Technology’s Web application, the component is

recently applied in multiple research project. Among

others we are currently working on additional data

adapters for common data types, an information flow

system, based on the WebComposition/DGS and the

integration of additional security infrastructure

components.

The WebComposition components, demos and

additional documentation are accessible through

http://www.WebComposition.net/DGS and

http://www.WebComposition.net/idFS.

10. References

[1] T. O'Reilly, "Web 2.0 Compact Definition: Trying Again",

http://radar.oreilly.com/2006/12/web-20-compact-definition-

tryi.html (05-29-2006).

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice. Boston, San Francisco, New York: Addison-Wesley,

2003.

[3] H.-W. Gellersen, R. Wicke, and M. Gaedke,

"WebComposition: An Object-Oriented Support System for the
Web Engineering Lifecycle", 6th International World Wide Web

Conference, Santa Clara, CA, USA, 1997, pp. 1429-1437.

[4] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, S.
Schwabe, M. Gaedke, and B. White, "Web Engineering", Journal

of Web Engineering, vol. 1, pp. 3-17, 2002.

http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html

M. Gaedke, A. Heil GET /dgs HTTP/1.1 Host: www.WebComposition.net Hawaii International Conference on System
Sciences (HICSS-42), Waikoloa, Big Island, Hawaii, USA, 5.-8. January 2009, ISBN 978-0-7695-3450-3; ISSN 1530-1605.

[5] M. Gaedke, M. Nussbaumer, and E. Tonkin, "WebComposition

Service Linking System: Supporting development, federation and
evolution of service-oriented Web applications", 3rd Int. Workshop

on Web-oriented Software Technology (IWWOST 2003), 2003.

[6] IT-Management and Web Engineering Research Group
(MWRG), "WebComposition Service Linking System",

http://mwrg.tm.uni-karlsruhe.de/wsls (02-10-2008).

[7] R. Fielding, "Architectural Styles and the Design of Network-
based Software Architectures", University of California, Irvine,

2000.

[8] L. Richardson and S. Ruby, RESTful Web Services: O'Reilly,

2007.

[9] A. Heil and M. Gaedke, "WebComposition/DGS: Supporting

Web2.0 Developments With Data Grids", IEEE International
Conference on Web Services (ICWS 2008), Beijing, China, 2008.

[10] C. M. MacKenzie, K. Laskey, F. McCabe, and R. Metz,

"Reference Model for Service Oriented Architecture 1.0",
http://www.oasis-open.org/committees/soa-rm/ (

[11] T. Berners-Lee, "Universal Resource Identifiers in WWW",

http://www.ietf.org/rfc/rfc1630.txt (11-24-2007-2007).

[12] T. Berners-Lee, "Metadata Architecture",

http://www.w3.org/DesignIssues/Metadata.html (05-31-2008).

[13] Japan Electronics and Information Technology Industries
Association, "Exchangeable image file format for digital still

cameras: Exif Version 2.2", 2002.

[14] L. Andresen, "Dublin Core Metadata Element Set, Version
1.1: Reference Description", http://dublincore.org/documents/dces/

(02-18-2008).

[15] H. Kilov, "From semantic to Object-oriented Data Modeling",

First international Conference on Systems Integration, Morristown,

NJ, USA, 1990, pp. 385-393.

[16] J. Futrelle, "Harvesting RDF Triples", International

Provenance and Annotation Workshop (IPAW'06), Chicago, Il,

USA, 2006, pp. 64-72.

[17] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou,

and L. Moreau, "Security Issues in a SOA-based Provenance

System", International Provenance and Annotation Workshop
(IPAW'06), Chicago, Il, USA, 2006, pp. 203-21.

[18] J. Gregorio, M. Hadley, M. Nottingham, and D. Orchard,

"URI Template", http://tools.ietf.org/id/draft-gregorio-uritemplate-
03.txt (02-06-2008).

[19] T. Berners-Lee, "Linked Data",

http://www.w3.org/DesignIssues/LinkedData.html (02-20-2008).

[20] D. Brickley and L. Miller, "FOAF Vocabulary Specification

0.9", http://xmlns.com/foaf/spec/20070524.html (06-03-2008).

[21] 37signals LLC, "Backpack", http://www.backpackit.com/ (02-
19-2008).

[22] Amazon Web Services LLC, "Amazon Simple Storage

Service Developer Guide",
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/ (06-

03-2008).

[23] F. Shanahan, Amazon.com Mashups. Birmingham, UK: Wrox
Press Ltd., 2007.

[24] H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication",
http://www.ietf.org/rfc/rfc2104.txt (06-03-2008).

[25] H. Lockhart, S. Andersen, S. J. Bohren, Y. Sverdlov, M.

Hondo, H. Maruyama, A. Nadalin, N. Nagaratnam, T. Boubez, K.

S. Morrison, C. Kaler, A. Nanda, D. Schmidt, D. Walters, H.

Wilson, L. Burch, D. Earl, S. Baja, and H. Prafullchandra, "Web

Services Federation Language (WS-Federation)", 2006.

[26] M. Gaedke, J. Meinecke, and M. Nussbaumer, "A Modeling

Approach to Federated Identity and Access Management", 14th

International World Wide Web Conference (WWW'05), Chiba,
Japan, 2005, pp. 1156-1157.

[27] J. Meinecke and M. Gaedke, "Modeling Federations of Web

Applications with WAM", Third Latin American Web Congress
(LA-WEB 2005), Buenos Aires, Argentina, 2005, pp. 23-31.

[28] J. Meinecke, M. Nussbaumer, and M. Gaedke, "Building

Blocks for Identity Federations", Fifth International Conference on

Web Engineering (ICWE 2005), Sydney, Australia, 2005, pp. 203-

208.

[29] IT-Management and Web Engineering Research Group
(MWRG), "Home of the IT-Management and Web Engineering

Research Group", http://mwrg.tm.uni-karlsruhe.de/ (03-06-2008).

[30] webengineering.org, "The Web Engineering Community Site

- WebEngineering.org", http://www.webengineering.org/ (06-03-

2008).

[31] International Society for Web Engineering e.V. (ISWE),

"International Societe for Web Engineering e.V." http://www.iswe-

ev.de/ (06-03-2008).

[32] Amazon Web Services LLC, "Amazon SimpleDB Developer

Guide", 2008.

[33] P. Castro, "Project Astoria", The Architecture Journal, pp. 12-
17, 2007.

[34] M. Nussbaumer, "Entwicklung und Evolution

diensteorientierter Anwendungen im Web Engineering",
Universität Karlsruhe (TH), Karlsruhe, 2007.

[35] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Gribble, and

H. M. Levy, "Organizing and Sharing Distributed Personal Web-
Service Data", 15th International World Wide Web Conference

(WWW 2008), Bejing, China, 2008, pp. 755-754.

[36] Google Inc., "OpenSocial",
http://code.google.com/apis/opensocial/ (06-03-2008).

[37] Google Inc., "Google Data APIs",

http://code.google.com/apis/gdata/ (02-17-2008).

http://mwrg.tm.uni-karlsruhe.de/wsls
http://www.oasis-open.org/committees/soa-rm/
http://www.ietf.org/rfc/rfc1630.txt
http://www.w3.org/DesignIssues/Metadata.html
http://dublincore.org/documents/dces/
http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt
http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt
http://www.w3.org/DesignIssues/LinkedData.html
http://xmlns.com/foaf/spec/20070524.html
http://www.backpackit.com/
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/
http://www.ietf.org/rfc/rfc2104.txt
http://mwrg.tm.uni-karlsruhe.de/
http://www.webengineering.org/
http://www.iswe-ev.de/
http://www.iswe-ev.de/
http://code.google.com/apis/opensocial/
http://code.google.com/apis/gdata/

