
A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

Components for Growing the RESTful Enterprise

Andreas Heil
1,2

, Johannes Meinecke
1
, Martin Gaedke

1

1
Chemnitz University of Technology

09111 Chemnitz, Germany
2
Microsoft Research Cambridge

CB3 0FB Cambridge, United Kingdom
1
{firstname.lastname}@cs.tu-chemnitz.de,

2
v-aheil@microsoft.com

Abstract: For a modern enterprise, it is vital to be on the Web. Beyond offering

human-readable Web sites, organizations increasingly use the Web as a media for

machine-readable data about itself. With the help of technologies like XML feeds,

RESTful Web services and semantic markup, new forms of enterprises models

emerge in a bottom-up way. These models are easily consumable and facilitate the

interaction with departments, partners and customers. Engineering good publishing

systems is however extremely challenging. On the one hand, knowledge of many

technologies is required; on the other hand, it must be easy to extend systems and

data models in accordance to agile businesses. In this paper, we propose a frame-

work of components for publishing dynamically growing enterprise models on the

Web, present an implemented system and discuss its use in a case study.

1 Introduction

An enterprise model is a computational representation of an organization, covering as-

pects like its structure, activities or processes [FG98]. In recent years, there has been a

tendency for enterprise data to grow in a bottom-up way rather than in a planned top-

down way [TW06]. Simple lists, which were originally created to fulfil some personal

organization need, are made available to others, get extended and become valuable assets

for the enterprise. Technologically, this bottom-up form of collaboration is enabled

through Web-based tools like Wikis, blogs, feeds and mashups. These technologies are

suitable for both, in usage the Internet with public accessibility as well as usage in corpo-

rate networks and intranets. The dynamic growth of enterprise data in both scenarios is

favoured by the principles of the Web, after which relevant resources have a URI and

can thus be linked to and combined. In accordance to the Web’s underlying Representa-

tional State Transfer (REST) architecture [Fi00], companies with such Web-enabled

models could be called RESTful enterprises.

This way of exposing information comes with a number of advantages for the company.

The data can be easily combined in end user-written mashups that are characterized by

decreased implementation costs over traditional software development [An06]. Typical

scenarios involve the combination of external sources, like geographical maps, with

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

internal data, like employee workplaces. The relative simplicity of standards like HTML

and XML makes it easy to reuse the information in many places, as e.g. to display in-

formation on multiple web sites. This in turn improves consistency and lowers the cost

to maintain the information, changing the future business behaviour [Yo07]. In addition,

existing Web tools can be leveraged, as for example to provide search across the compa-

ny’s XML data sources [MM04].

In this paper, we concentrate on the question of how to build the necessary Web-based

systems to expose enterprise models efficiently, rather than on the enterprise models

themselves. In section 2, we examine the engineering challenges that arise in typical

scenarios with the help of an example. From this examination, we derive the aim of our

work: to identify reusable components for exposing enterprise models in a Web-

compliant way. As our main contribution, we then specify a framework of components

that can be instantiated to support a large number of standards and tasks in section 3. In

section 4, we discuss our experience with the implementation of a number of these com-

ponents, which we used to gradually build up a RESTful enterprise model. Section 5

contrasts our work with related approaches and section 6 summarizes the conclusions.

2 Exposing Bottom-Up Enterprise Models on the Web

For illustration purposes, we explain the general problem domain with an example sce-

nario. The example covers the typical evolutionary bottom-up growth of information

assets within organizations that start within small teams and turn into large-scale under-

takings over time [TW06]. Figure 1 shows entities inside an organization that gradually

emerge as Web-based representations, called lists in the following.

Figure 1: Example of a gradually growing enterprise model exposed on the Web.

In the beginning, a team sets up lists as ad-hoc solutions for managing reports and meet-

ings. The content is published in the RSS format, which allows team members to sub-

scribe to automatic notifications on any new list items and which enables other teams to

integrate the lists in their homepages (1). Over time, this “model” is extended, as more

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

lists become available (2) and more data formats of the existing lists are offered (3). For

example, in addition to the very generic RSS format, other XML formats might include

geographical coordinates and domain-specific information that enable more powerful

mashups. In order to improve the combined use of the data, multiple lists are then linked

to each other (4). More precisely, URLs are included in the list items that point to other

list items, as e.g. to point from reports the authoring employees. Data from existing pro-

ject and customer management solutions is exposed in a similar way to be combined

with the ad-hoc data sources (5). Future interoperability needs may demand the support

for additional, semantically annotated formats (6). These can be searched, viewed and

processed with a wide range of semantic tools, without the need for programming appli-

cation-specific mappings.

The described way of exposing enterprise data can be seen as an application of the REST

architecture style. REST comprises a set of design principles that are seen as the reason

for the scalability and organic growth of the Web [Fi00]. These principles are applied

here to achieve a similar advantage for enterprise models. A central requirement de-

mands that every important entity must have an identifier so that it can be referred to. As

shown in Figure 1, both lists and list items in the example are mapped to URIs. REST

distinguishes between resources (the entities on the left side) and their various represen-

tations (the content types on the right side). The representation used depends on the

demands of the requesting application. In the example, the same resource is reused in

mashup engines, RSS readers, Web applications and Semantic Web browsers. All re-

sources can be manipulated in a standardized way through the uniform interface of

HTTP methods. In addition to read-access, this allows e.g. adding a new entry to the

meeting list via an HTTP POST.

Whereas tools now become available for easily combining data sources on the Web

[Ma08, Mi08, Ya07], exposing structured data beyond the simple publication of static

XML files remains a largely unsupported task. [PZL08] list several design decisions to

be made when programming RESTful services that include designing URIs, defining the

interaction semantics of HTTP methods and choosing the data presentations. In this

work we are interested in building systems that automate this process as much as possi-

ble to support the outlined target domain. We observe the following engineering chal-

lenges:

 Gap between end users and technologies: The initial data sources in the scenario

are set up by users rather than a central IT-department. This corresponds to the find-

ings of US Bureau of Labour Statistics [Us08], stating that 98% of users creating

programs are end users without special IT-expertise who need to solve immediate

non-technical problems. In contrast, the described final solution comprises a large

number of technologies. While the benefits of e.g. Semantic Web formats may be

highly desirable, the necessary knowledge to author them cannot be expected from

the end user. Instead, technologies should be encapsulated in tools or parts of tools as

much as possible.

 Reusability of multiple resource representations: As exemplified, the reusability

of the exposed enterprise models requires the same resources to be accessible in

many different representations. To free the user from the burden of managing differ-

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

ent representations, these should be generated automatically. For automatic mappings

to work, structure must be imposed on the data. While unstructured content, as e.g.

managed in Wikis, has the potential for organic growth, it cannot be reused easily

and is therefore lost for applications beyond human browsing.

 Dynamic growth of data structures: The enterprise model in the example is gradu-

ally extended, as more data is added and linked to existing data. Corresponding sys-

tems must therefore support the effortless creation of new lists, including their struc-

ture and the mappings to their representations. Dynamic growth implies that this is

possible at runtime and on the Web. Ideally, the process of extending the model can

profit from the same simplicity and standard-conformance as used for manipulating

individual resources.

 Need for system extensibility: In addition to the model, the system itself is subject

to growth. In the example, this applies to the support for new formats (e.g. RDF),

new data sources (e.g. customer management systems) and new client applications

(e.g. search applications). Furthermore, the opening of the model to partners outside

the enterprise may require adding security mechanisms that were unforeseen and un-

necessary at the very beginning. The system architecture should reflect this need and

allow for flexibility.

The observed challenges stress the need for solutions that comply with Web standards

and that encapsulate these standards in reusable, extendable parts. Next, we therefore try

to identify reusable components for exposing bottom-up enterprise models in a Web-

compliant way.

3 The Data Grid Service Component Model

The WebComposition Data Grid Service (WebComposition/DGS) component model is a

two-layer framework of reusable software artefacts for building customizable Web-

based applications. A WebComposition/DGS component is a RESTful service for creat-

ing, managing and publishing lists of arbitrary data in the Web. It is based on a set of

exchangeable sub-components to incorporate the latest technological developments.

Exchanging these sub-components allows adopting the component itself to meet specific

business needs. In the following we will first describe WebComposition/DGS compo-

nent’s building blocks (cf. Figure 2) before we will discuss the possible usage of the

WebComposition/DGS component itself. Additional background information on the

WebComposition/DGS component and its architectural description can be found in

[HG08].

The Service Component (a) represents a central facet within the WebComposition/DGS

component model. Incoming requests are accepted, processed and delegated irrespec-

tively of their origination. Clients sending a request could be HTTP-based browsers,

SOAP-based SOA components or legacy XML-RPC based clients that rely on so-called

plain old XML (POX) invocations. Incoming data is processed by the Data Adapter (b).

It is within the Data Adapter’s responsibility to create and store data structures in form

of lists using an external storage solution. Multiple Data Adapters could be specified

within a WebComposition/DGS component, each responsible for a specific representa-

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

tion of the resources. Based on the requestor’s needs, an appropriate Data Adapter is

used to provide the corresponding representation of a resource. In case of a HTTP-based

request this is achieved by HTTP content negotiation. Simultaneously to the creation of

the data, metadata is saved along with the data. Unnoticeable to the user, a Meta Store

component processes additional metadata (c). This includes e.g. creation and last update

times, creator and other information that describes the actual data. The metadata already

provided automatically by a Data Adapter can be completed by additional metadata

added through the user. As the format of metadata varies from case to case, Input and

Output Filter components (d) allow specifying the transformation of metadata formats

into and from the internal representation within the Meta Store component. To be de-

ployed in various business scenarios, an optional Access Control component incorpo-

rates the authentication and authorization functionality of external security components

(e). Finally, optional sub-components can be added to a WebComposition/DGS compo-

nent extending the Service Component’s capabilities with additional unforeseen func-

tionality (f).

Figure 2: UML component diagram of WebComposition/DGS sub-components.

The components described thus far allow customizing a WebComposition/DGS compo-

nent to a large extent. Once customized and configured, the WebComposition/DGS acts

as a component by itself that can to be seen as a black-box, hiding its internal functional-

ity (cf. Figure 3). A core concept of the WebComposition/DGS component (i) is its ca-

pability of being accessible in a uniform way through different types of clients. This

includes standard Web-based applications such as common Web sites (ii), RSS feed

readers as well as Semantic Web browsers. In addition, specialized clients can be used to

access more specific functionality of a WebComposition/DGS component (iii). One

example of this type of clients, a list managing application, will be discussed in the sec-

tion 4. Based on a generic SOAP interface, derived from our previous work [MMG07],

SOA-based clients can also access the WebComposition/DGS component (iv). The way

enterprise models are stored depends heavily on the particular requirements and con-

straints of a business. Hence, this is foreseen as self-subsistent component within the

system (v) allowing to apply database management systems or simple file based solution

WebComposition/DGS

Meta Store

Input Filter

IFilter

Output Filter

IFilter

Data Adapter

Metadata

Extensions

Access Control

Access Rights

HTTP

Service

Component

a

b

c

Data

SOAP

POX

Authentication &

Authorization

Data Access

d

e

f

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

– based on the particular requirements. This also allows reacting to the growing needs of

projects that originally start small and increase in size over time. Another form of poten-

tial evolution is foreseen by the security component that provides external, centralized

authentication and authorization functionality to complement the access control enforced

within the WebComposition/DGS component (vi). Possible security components applied

for this reason include, but are not limited to the Identity Federation System (idFS)

[MNG05], Shibboleth implementations [In08] or the Active Directory Federation Ser-

vices (ADFS) [Pi05].

Figure 3: Distributed application based on a WebComposition/DGS component.

The proposed two-layer component architecture allows the disciplined and cost efficient

engineering of Web-based application suitable to the current evolution stage. In the be-

ginning, the out-of-the box functionality of a WebComposition/DGS component in con-

junction with functionality of already available components could be sufficient to deal

with scenarios where unstructured data is created ad-hoc. The bottom-up growth of this

information as well as its increasing need for structures is tackled by exchangeable com-

ponents addressing the particular needs. In the following section we will discuss this

evolution of a system, based on a real data stock that grew over time.

4 Case Study

We now describe a project in which the presented component model was applied to

bottom-up enterprise models. In the case at hand, the enterprise model represents the

structure of a research group. Performed in the academic field, the nature of the exposed

model is not restricted to the research domain, so that we consider the solutions applica-

ble to enterprises in general. The study was conducted for 6 months in a production

environment, using real, externally visible data. During this time, the model was gradual-

ly exposed and extended with new resources, new representations and new components

according to the emerging needs of the group. A part of it was transformed from origi-

Distributed Application

SOA Client

Web Site

DGS Client

WebComposition

DGS

Security

HTTP

SOAP

Authentication &

Authorization

Storage Solution

Data Access

i

ii

iii

iv
v

vi

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

nally unstructured media, mainly managed with Wiki software. This old form of data

management proved to be too hard to integrate and consume outside the Wiki itself.

Therefore, an implementation of the specified WebComposition/DGS was used to suc-

cessively expose data in accordance to Web standards and the REST principles. Over

time, this included publications, courses, projects, student projects and people. The lists

typically contain several hundred entries, describing both historical and currently active

data. In addition, the model was extended several times to accommodate for new infor-

mation needs (e.g. adding archive IDs to publications), to introduce links between differ-

ent resources (e.g. relating publications and people) and to add new representations (cf.

Figure 4).

 (a) (b)

 (c) (d)

Figure 4: Representations of resources from the WebComposition/DGS in an RSS reader (a), in a

Semantic Web browser (b), in the DGS List Manager (c) and on a Web site (d).

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

The technical realization included the following components:

 As the foundation, we used our standard implementation [HG08] of the WebCom-

position/DGS that is based on the .NET Framework. In this implementation, sub-

components (cf. Figure 2) correspond to dynamic link libraries that are composed ac-

cording to configuration files.

 The XML Data Adapter provided the necessary facilities for managing arbitrary

XML lists. The adapter supports the creation of new lists at runtime as well as the en-

forcement of XML-Schemas to ensure that the data conforms to a given structure.

 In addition to the default file-based XML storage, a Database Storage Solution

based on SQLite was developed to verify the exchangeability of storage solutions.

 Another component, the Dynamic Transformation Adapter, was used to generate

new presentations from existing XML resources based on XSL stylesheets, as e.g. to

generate RSS-feeds (cf. Figure 4a).

 Later, a RDF Data Adapter was developed to generate RDF representations of re-

sources and metadata according to Linked Data guidelines [BCH07]. Once a list

structure has been mapped to common ontologies, the model information can be re-

used in Semantic Web tools together with other data from the Web (cf. Figure 4b).

 For managing the model stored in the WebComposition/DGS, a DGS List Manager

was developed. This generic client component retrieves the XML schemas from the

list manager and automatically generates forms for editing resources (cf. Figure 4c).

 The integration into the research group’s Web site was supported with a PHP List

Client Component. The component encapsulates the technical details of rendering

the data and generating the necessary links to other representations (cf. Figure 4d).

We summarize the lessons learned during the case study with respect to the engineering

challenges outlined in section 2. The concept of encapsulating technologies in compo-

nents proofed to be an important factor for end user support. With the developed system,

new lists can be created ad-hoc and are automatically editable in Web forms, without

any scripting or code deployment. They can also be integrated into Web pages without

the need to know the involved internal components, transformations, protocols and for-

mats. Whereas in our current system XML schemas and XSL stylesheets need to be

specified when creating new lists, the architecture allows for adding more user-friendly

components that automate this process further. The applied components also favored the

reusability of the resources by automating the process of generating content representa-

tions. On the Web site alone, the data could be integrated at multiple locations for realiz-

ing different views on it, e.g. on personal homepages, on project pages and on central

group pages. Furthermore, the study illustrated the system’s potential for bottom-up data

growth. Natural limits to flexible changes arose from the Web’s need for stable URIs

and from necessary updates of the corresponding mappings into formats and ontologies.

The demand for system extensibility was met by the component-based architecture. As

demonstrated, components were gradually added to the WebComposition/DGS, while

the service was in productive use, i.e. integrated into the group’s Web site.

The described systems are still in use and will be extended in future for further studies.

A demo of the WebComposition/DGS as well as downloadable components can be

found at http://www.webcomposition.net/dgs.

http://www.webcomposition.net/dgs

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

5 Related Work

The growing demand for creating, managing and publishing data within Web-based

solutions is reflected in the high number of ongoing developments in this field. In this

section we discuss approaches related to our work. We concentrate on solutions that

follow the REST-style principles, allow building and hosting enterprise models and are

applicable to our case study. The solutions are segmented into application-specific, data-

base-driven and protocol-driven approaches.

Application-specific container solutions: This class of solutions includes Wikis, Web-

logs and portals that maintain data in the form of lists. Wikis provide lists with extensive

change-histories and references to list items that do not yet exist. Weblogs are also part

of this class by providing chronologically ordered lists of entries and different views

(e.g. by tags, month, week or day) on the data. While both follow REST-like architec-

tures and gain increasing recognition within companies [Li07], they mainly focus un-

structured content for human readers. An example of a commercial list-oriented applica-

tion is Backpack [37Si08]. This easy-to-use Web-based service provides basic function-

ality to manage and share lists such as notes, images and files on the Web. The data

model is however preset and not subject to growth. The more complex document man-

agement system Microsoft Office SharePoint [Mi07] provides the capability of maintain-

ing lists of documents, tasks, contacts, appointments as well as self-defined lists. While

this theoretically allows managing arbitrary models, the monolithic approach taken

makes it hard to reuse the structure outside the portal itself in a standardized way. Gen-

erally, container solutions are suitable for dedicated tasks, offer a limited set of function-

ality and appear mostly as stand-alone solutions that are difficult to integrate into exist-

ing component-based environments.

Database-driven approaches: Currently, a number of services can be observed that

provide traditional database functionality over Web standards. These services mostly

target a commercial audience and are offered by particular providers. The Amazon Sim-

pleDB [Am08] Web service includes a simple REST-style Web service interface that

follows the traditional CRUD (Create, Read, Delete, Update) pattern [Ki90]. SimpleDB

is designed to store relatively small amounts of data with the focus on fast data access.

For growing needs, the commercial Amazon S3 service [Sh07] is offered. In contrast to

WebComposition/DGS, these services form black-box components, lack the capability

of customization and do not impose structure on the data. The Microsoft ADO.NET Data

Services [Ca07] comprise an implemented set of patterns for data-centric services. The

data is represented in various common formats such as XML, JSON or ATOM/RSS. All

the characteristics of the REST-like architectural style appear as proposed in [Fi00].

Compared to the WebComposition/DGS component, this solution is designed for the

Microsoft database management systems only and introduces dependencies to very spe-

cific platforms and technologies. None of the examined database-driven approaches

supported creating and changing list structures via their Web interface. Their usage often

requires extensive background knowledge of database management systems.

Protocol-driven approaches: The Atom standard [GD07, NS05] defines an XML-based

format and an HTTP-based protocol for publishing and editing lists of related docu-

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

ments. For example, the POST method is used to create new resources within a collec-

tion, including an additional link entry for an extendable set of metadata about the par-

ticular resource. The most common usage of Atom is the syndication of news and Web-

logs. While the format is extendable, there is no support for serving multiple representa-

tions of a resource. The Google Data APIs [Go08] provide simple protocols for reading

and writing data on the Web based on RSS 2.0 and ATOM 1.0. The CRUD concept is

fully supported through a REST-style interface using HTTP and the corresponding

methods to access and query the XML-based data. Metadata is provided in the form of

additional feeds containing referential information using e.g. the Google Base schema.

However, this strategy is limited in terms of the fixed semantic information provided by

the metadata feeds. According to their protocol-driven nature, the approaches do not

cover component-based architectures for realizing extendable systems.

With respect to the aimed usage for bottom-up enterprise models, the related approaches

were either too rigid for gradual growth, or too unstructured for providing the model data

in multiple reusable representations.

6 Conclusion

In this paper we presented the WebComposition/DGS component model as a framework

for the Web-compliant exposition of enterprise models. Our work focuses on the often

observed bottom-up approach to creating valuable enterprise data sources that start out

as simple lists on the Web. This process is supported by breaking down functionality and

technology support into an extendable set of components. Within a case study, we

showed the practical application of corresponding component implementations and

demonstrated their ability to represent different representations of the model for maxi-

mum reusability. Upcoming work is targeted at finding ways to better support end user

tasks, like e.g. the specification of new lists. Another interesting open problem is the

transparent handling of URIs as references to other list entries or machine-readable in-

formation on the Web with corresponding user interfaces.

References

[37Si08] 37signals LLC: Backpack - Website, 2008, http://www.backpackit.com/ (02-19-2008).

[Am08] Amazon Web Services LLC: Amazon SimpleDB Developer Guide, 2008.

[An06] Anant, J.: Enterprise Information Mashups: Integrating Information, Simply, in 32nd

International Conference on Very Large Data Bases, VLDB Endowment, Seoul, Korea;

2006, p. 3-4.

[BCH07] Bizer, C.; Cyganiak, R.; Heath, T.: How to Publish Linked Data on the Web, 2007.

[Ca07] Castro, P.: Project Astoria, The Architecture Journal, 2007(13): p. 12-17.

[Fi00] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-

tures, University of California, 2000.

[FG98] Fox, M.S.; Gruninger, M.: Enterprise Modeling, AI Magazine, 1998. 19(3): p. 109-121.

[Go08] Google Inc.: Google Data APIs - Website, 2008, http://code.google.com/apis/gdata/ (02-

17-2008).

http://www.backpackit.com/
http://code.google.com/apis/gdata/

A. Heil, J. Meinecke, M. Gaedke Components for Growing the RESTful Enterprise Fachtagung
Modellierung betrieblicher Informationssysteme (MobIS 2008), Saarbrücken, Germany, ISSN
1617-5468

[GD07] Gregorio, J.; Hora, B.D.: The Atom Publishing Protocol - Request for Comments: 5023,

2007, http://www.ietf.org/rfc/rfc5023.txt (02-19-2008).

[HG08] Heil, A.; Gaedke, M.: WebComposition/DGS: Supporting Web2.0 Developments With

Data Grids, in IEEE International Conference on Web Services (ICWS 2008), Beijing,

China; 2008.

[In08] Internet2: Shibboleth - Website, 2008, http://shibboleth.internet2.edu/ (08-08-2008).

[Ki90] Kilov, H.: From semantic to Object-oriented Data Modeling, in First international Con-

ference on Systems Integration, Morristown, NJ, USA; 1990, p. 385-393.

[Li07] Li, C.; Stromberg, C.: The ROI of Blogging, Forrester Research Inc., 2007.

[Ma08] Markl, V. et al.: Data Mashups for Situational Applications, in Model-Based Software

and Data Integration: First International Workshop, Mbsdi 2008,, Berlin, Germany;

2008.

[MMG07]Meinecke, J.; Majer, F.; Gaedke, M.: Component-Based Content Linking Beyond the

Application in Seventh International Conference on Web Engineering (ICWE), Springer,

Como, Italy; 2007, p. 427-441.

[MNG05]Meinecke, J.; Nussbaumer, M.; Gaedke, M.: Building Blocks for Identity Federations, in

Fifth International Conference for Web Engineering (ICWE2005), Springer, Sydney,

Australia; 2005, p. 203-208.

[Mi07] Microsoft: Microsoft Office SharePoint Server 2007 Homepage - Website, 2007,

http://office.microsoft.com/en-us/sharepointserver/ (02-01-2007).

[Mi08] Microsoft Corporation: Microsoft Popfly - Website, 2008, http://www.popfly.com/ (02-

19-2008).

[MM04] Mukherjee, R.; Mao, J.: Enterprise Search: Tough Stuff, Queue, 2004. 2(2): p. 36-46.

[NS05] Nottingham, M.; Sayre, R.: The Atom Syndication Format - Request for Comments:

4287, 2005, http://www.ietf.org/rfc/rfc4287.txt (02-18-2008).

[PZL08] Pautasso, C.; Zimmermann, O.; Leymann, F.: RESTful Web Services vs. “Big” Web

Services: Making the Right Architectural Decision, in 17th International World Wide

Web Conference, ACM Press, Beijing, China; 2008, p. 805-814.

[Pi05] Pierson, N.: Overview of Active Directory Federation Services in Windows Server 2003

R2, 2005.

[Sh07] Shanahan, F.: Amazon.com MashupsEds., Birmingham, UK: Wrox Press Ltd., 2007.

[TW06] Tapscott, D.; Williams, A.D.: Wikinomics: How Mass Collaboration Changes Every-

thing, New York, NY: B&T, 2006.

[Us08] U.S. Department of Labor: Bureau of Labor Statistics - Website, 2008,

http://www.bls.gov/ (07-20-2008).

[Ya07] Yahoo! Inc.: Pipes: Rewire the web - Website, 2007, http://pipes.yahoo.com/pipes/ (02-

19-2008).

[Yo07] Young, G.O.: IT Will Measure Web 2.0 Tools Like Any Other App, Forrester Research,

Inc., Cambridge, MA, USA, 2007.

http://www.ietf.org/rfc/rfc5023.txt
http://shibboleth.internet2.edu/
http://office.microsoft.com/en-us/sharepointserver/
http://www.popfly.com/
http://www.ietf.org/rfc/rfc4287.txt
http://www.bls.gov/
http://pipes.yahoo.com/pipes/

