

M. Gaedke, A. Heil, D. Härtzer; WebComposition/DGS: Dynamic Service Components for Web 2.0 Development 10th International

Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), S. 456-459, Linz, Austria,

26. November 2008, ISBN 978-3-85403-240-3.

WebComposition/DGS:

Dynamic Service Components for Web 2.0 Development
Martin Gaedke

1
, Andreas Heil

1,2
, and Danilo Härtzer

1

1
Chemnitz University of Technology

Faculty of Computer Science
09111 Chemnitz, Germany

{firstname.lastname}@cs.tu-chemnitz.de

2
Microsoft Research

Computational Sciences Group
CB3 0FB Cambridge, United Kingdom

v-aheil@microsoft.com

Abstract
Modern software solutions for distributed applications show a

strong need for fast and flexible integration of heterogeneous

service technologies, as well as for the orchestration of

traditional service-based business scenarios (e.g. SOAP or RPC)

and REST-driven approaches. The fulfilment of these

requirements in existing enterprise platforms is typically

accomplished with parallel working components based on

different technologies and APIs, resulting in architectural

overhead and increased complexity. The WebComposition/DGS

(Data Grid Service) aims at solving this issue with the help of a

central service layer which specifies a common plug-in

framework used to adapt concrete service protocols and which

offers an easy-to-use interface for deploying new logic and

services. This approach reduces development effort and overall

costs thanks to its coherent and integrated DGS-compatible

service architecture with automated support for several

protocols.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – Distributed applications; H.3.4 [INFORMATION

STORAGE AND RETRIEVAL]: Systems and Software -

Information networks; H.3.5 [INFORMATION STORAGE

AND RETRIEVAL] Online Information Services – Web-based

services

General Terms

Management, Reliability, Standardization.

Keywords

WebComposition, DGS, REST, RESTful, Service-oriented

Architecture, Semantic Web.

1. INTRODUCTION
The WebComposition/DGS platform is the first element of the

fourth generation of the WebComposition approach [1]. It offers

a XML-based access to distributed data and its semantic

relationships based on RDF (Resource Description Framework)

support. The DGS solution focuses on an easy manageability

and a straightforward processing of XML-structures within the

context of the complex distributed scenarios characteristic of

modern Web applications based on Representational State

Transfer (REST) principles [2] and common SOA-based

business scenarios. Inside the DGS’ architecture, the central

service component plays an essential role in taking over logic

processing and orchestration. The DGS core component

interacts with the integrated rights management API and

supports user and role dependent policy rules for single-sign-on

scenarios and environments with federative access rules.

This clear separation of concerns, based on a well-structured

composition of data, logic and policy handling components

provides a solid basis for the design of distributed applications.

This paper will give the reader an insight into the processing

logic of the central service component of the DGS as well as

into its interfaces and specifications.

2. STATE-OF-THE-ART
The DGS architecture approach introduced in this paper

showcases a platform for the implementation of distributed

applications. This section will provide a succinct overview and

comparison of alternative software solutions within the same

problem spectrum.

2.1 Application Server
Application servers provide a runtime environment for business

applications and interfaces within the context of enterprise

solutions [3] (e.g. transaction management, O/R-Mapping

approaches, authentication …).

An application server acts primarily as a technological platform

on top of which user applications can be implemented and

hosted. In order to write and deploy new services, the

corresponding business logic and its components need to be

implemented, typically within a development environment

(IDE). Thus, supporting different service technologies requires

tying the concrete service implementations to specific third-

party libraries (e.g. implementing SOAP services by making use

of the Apache Axis framework in a JEE scenario). As a matter

fact, there is currently no API or framework providing an

automated mapping of service logic to a wide set of service

protocols and transports. Furthermore, the use of an application

server to support a number of different service technologies (e.g.

SOA-like or REST-driven [4] approaches) results in increased

complexity for development and runtime environments. As a

case in point, the implementation of a service call in a common

SOA-scenario requires following technical artefacts:

WDSL/XML technologies (SOAP, BPEL), service frameworks

(e.g. Apache Axis), a specific application server API (.NET or

JEE), an O/R-Mapping framework (e.g. Hibernate or Toplink)

and a data layer, typically a relational or an object-relational

hybrid database like Oracle, PostgreSql or Microsoft SQL

Server).

M. Gaedke, A. Heil, D. Härtzer; WebComposition/DGS: Dynamic Service Components for Web 2.0 Development 10th International

Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), S. 456-459, Linz, Austria,

26. November 2008, ISBN 978-3-85403-240-3.

2.2 Orchestration of Web Services
Several platforms offer the possibility to orchestrate and

manipulate web services, either based on recent specifications

like BPEL or BPM, or with the help of non-standard Web 2.0

solutions (Yahoo! Pipes, RSS-Syndication). These tools allow

for the implementation of logic by combining, mixing and

linking existing web services.

Contrary to the DGS platform, this approach has evident

drawbacks in the realization of applications based on a specific

data model and contemplating a non-trivial business logic layer.

For instance, the BPEL approach is indeed suitable for the

orchestration of existing services, but does not currently support

an integrated persistence layer, thus forcing the developer to

implement by hand the systemic parts of the service components

[5].

The WebComposition/DGS solution offers an approach

combining the functional areas of application servers and web

service orchestration. Distributed applications can be created,

deployed and managed online without administrative effort

thanks to the integrated components for service processing,

rights management and XML handling.

3. INTEGRATED SERVICE

COMPONENTS
The core functionality of the WebComposition/DGS platform

lies in managing XML-based data for distributed applications.

The service layer acts as central hosting component for business

logic, and supports following requirements:

 Optimal processing of DGS data models

 Simple support of distributed applications and

services

 Support of an extensible service architecture

 Service management capabilities

 Integration of the DGS right management

3.1 Optimal Processing of DGS Data Model
The specification of deployable logic for the realization of

services is compatible with the DGS data model and guarantees

a powerful processing approach.

The data model of the DGS is based on the XML and XSD

technologies which will be shortly discussed in the following

paragraphs.

3.1.1 XPath
XPath is used to locate and extract specific sections of an XML

document [6], [7]. As a matter of fact, XPath instructions are

only able to select and extract one or more sections of an XML

document, but cannot apply any modification to it. Due to this

restriction, the XPath approach is not powerful enough in order

to act as a processing language, but represents a viable choice

for simple query and selection operations. Furthermore, XPath

constitutes an integral subset of more advanced XML processing

technologies like XSLT or XQuery [5].

3.1.2 XSL Transformation (XSLT)
XSLT is a programming language to transform XML documents

[8], [9]. This approach offers a powerful and flexible solution

for processing common logic in the context of a DGS data

model. The disadvantage of this approach is given by the serious

performance penalty associated with a wide use of XSLT

instructions. The processing of an XSLT style sheet requires

traversing the whole source document, even for the

transformation of few XML elements, hence rendering this

approach not suitable for the general manipulation of large

document sets.

3.1.3 XQuery
XQuery is a query language for XML data standardized by the

W3C consortium [10], which supports complex constructs used

to manipulate, filter, link, transform and create XML

documents. The usage of XQuery in the context of XML

processing is expected to play in the coming years a similar role

as the SQL query language in the traditional context of

relational and hybrid relational-object databases [11]. Another

advantage of this technology can be found in its independency

from a specific database technology. Finally, it should be noted

that XQuery can be successfully used to query and process

XML stored in databases as well as in traditional text

documents.

3.1.4 Service Abstraction Layer
To avoid a strict coupling in the specification of application

logic, the WebComposition/DGS approach supports a service

abstraction layer as a common way to process and manage

deployable service units. The central service framework

separates the processing logic from the protocol technology, and

follows an extensible approach. A set of available operations,

described within the DGS service specification, is defined for

each document type, i.e. an XML data structure which is

deployed to the DGS (cf. Figure 1). These XML data structures

maintained within a DGS are called lists in the following.

Figure 1. Root element of the DGS service specification.

Each list dependent service, representing a document type,

specifies an amount of operations which will be available and

deployed within the DGS.

Figure 2. Specification for a service operation.

M. Gaedke, A. Heil, D. Härtzer; WebComposition/DGS: Dynamic Service Components for Web 2.0 Development 10th International

Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), S. 456-459, Linz, Austria,

26. November 2008, ISBN 978-3-85403-240-3.

Each service operation consists of the following elements (cf.

Figure 2):

 A unique name

 An optional content type for the result

 An expression type used to determine the processing

engine

 A description for in and out parameters, if any

 An expression with type specific processing

instructions

Figure 3. Specification for inParamterType.

The inParameterType owns a property, called uriTemplate (cf.

Figure 3), which holds the information needed to deploy the

operation in a REST-driven scenario.

Figure 4. Specification for paramterType.

Figure 5. Specification for outParamterType.

With this specification, a protocol independent service can be

described and deployed to the DGS.

Let us consider a sample operation:

<operation

 name="getOpenTasksOf"

 type="text/xpath"

 contentType="text/xml">

 <inParameters uriTemplate="{userid}">

 <parameter name="userid" type="xsd:string"/>

 </inParameters>

 <outParameters>

 <parameter

 name="result"

 type="xsd:complexType">

 <xsd:sequence>

 <xsd:element

 name="task"

 maxOccurs="unbounded"

 type="TaskType"/>

 </xsd:sequence>

 </parameter>

 </outParameters>

 <expression>

 task[users/user/@id={userid}][@state='open']

 </expression>

</operation>

The example above describes a service for an operation of a

hypothetical task management service used to fetch all open

tasks of a given user. This operation will be added to the task

service after deploying it to the DGS.

3.2 Support Facilities to Access Services
Each dynamic service, once deployed, can be accessed over the

HTTP protocol without the need of an external service plug-in:

GET http://{DGS-baseUrl}/{listName}/

meta/service/{operationName}[/{uriTemplate}]

The above GET method represents the dynamic endpoint for the

REST-based approach in the DGS. Required arguments are

specified as part of the uriTemplate.

POST http://{DGS-BaseUrl}/{listName}/

meta/service/{operationName}

The POST method call above shows an alternate call syntax for

a DGS service. In this case, the required parameters are

contained in the body of the HTTP call.

3.3 Extensible Service Architecture
Based on the functionality briefly presented in the previous

sections, the DGS offers the possibility to plug in additional

adapters in order to support a number of different service

technologies and protocols. Each adapter is responsible for the

mapping of service calls to specific endpoints and protocols.

The main task of a service adapter consists in listening at its

endpoint and serving each incoming request by delegating its

logic processing to the central service layer.

Another important task lies in the dynamic expansion of WSDL

service descriptions with accessory information on supported

endpoints and protocols. As a matter of fact, for each document

type handled by the DGS, a single centrally managed service

M. Gaedke, A. Heil, D. Härtzer; WebComposition/DGS: Dynamic Service Components for Web 2.0 Development 10th International

Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), S. 456-459, Linz, Austria,

26. November 2008, ISBN 978-3-85403-240-3.

description exists, which includes the definition of all available

operations and of all supporting endpoints and protocols.

Dynamically created WSDL documents can be accessed at:

GET http://{DGS-BaseUrl}/{listName}/meta/wsdl

Additionally, the standard distribution of DGS offers a SOAP

support adapter reachable at the following endpoint:

POST http://{DGS-BaseUrl}/{listName}/meta/soap

3.4 Management Capabilities for Services
The management interface is based on a REST-driven CRUD

(create, read, update and delete) approach similar to the one

already available in the DGS.

GET http://{DGS-BaseUrl}/{listName}/meta/service

The above request returns the service description for the

specified document type (given as listName) with all its

available and deployed operations (the requested service

description will be served like in section 3.1.4 described

scheme).

Add, delete and manipulate operations are supported by a

CRUD behaviour similar to the one offered in DGS for list

manipulation.

GET http://{DGS-BaseUrl}/{listName}/

meta/service/{operationName}

The above request returns the XML entry for the given

operation.

POST http://{DGS-BaseUrl}/{listName}/

meta/service/{operationName}

The above POST method adds a new operation.

DELETE http://{DGS-BaseUrl}/{listName}/

meta/service/{operationName}

The DELETE method removes the specified operation.

3.5 Rights Management
Access rules for all deployed operations and services can be

defined based on the central rights management component.

The DGS has an integrated WS-Federation Standard compatible

authentication support, for instance providing identity through

idFS (Identity Federation System), as a further component of the

WebComposition approach [12].

Furthermore the DGS offers user/role based rights management,

so for each DGS managed operation, identified by its name and

its list dependency) a set of in- and excluded roles can be

defined.

4. Conclusion and Further Work
In this paper a simple but powerful approach for the

implementation of distributed services on top of the

WebComposition/DGS platform has been introduced. Under

consideration of reusability and security requirements, the

service specification described in the previous sections acts as a

central instance for logic processing.

Furthermore, in this work a flexible design allowing the easy

integration of different service technologies in a powerful

architecture for SOA-based distributed solutions has been

outlined and discussed.

The service deployment and management functions presented

above are structurally similar to the data manipulation behavior

supported in the DGS platform and inspired to the guidelines of

the W3C consortium.

The service layer aims at supporting specific core functionalities

like REST-driven CRUD operations and metadata management.

In order to fulfill this goal, the specifications must be extended

and improved in order to cover all the remaining REST

requirements. Furthermore, the DGS service specification needs

to follow the WSDL 2.0 specification [13] and offer a complete

support for the description of all available RPC and REST-

driven services.

5. REFERENCES

[1] Heil, A. and Gaedke, M., "WebComposition/DGS:

Supporting Web2.0 Developments With Data Grids."

In IEEE International Conference on Web Services

(ICWS 2008), Beijing, China, 2008.

[2] Fielding, R., Architectural Styles and the Design of

Network-based Software Architectures PhD thesis.

Irvine: University of California, 2000.

[3] Natis, Y. V., Pezzini, M., Iijima, K., and Favata, R.,

"Magic Quadrant for Enterprise Application Servers,

2Q08," Gartner, Inc. 24 April 2008.

[4] Richardson, L. and Ruby, S., RESTful Web Services:

O'Reilly, 2007.

[5] Margolis, B. and Sharpe, J. L., SOA for the Business

Developer: Concepts, BPEL, and SCA: Concepts,

BPEL and SCA: MC Press, Lewisville, 2007.

[6] W3C, XML Path Language (XPath) Version 1.0:

http://www.w3.org/TR/xpath (01-01-2008).

[7] W3C, XML Path Language (XPath) 2.0:

http://www.w3.org/TR/xpath20/ (8-18-2008).

[8] W3C, XSL Transformations (XSLT) Version 1.0:

http://www.w3.org/TR/xslt (08-18-2008)

[9] W3C, XSL Transformations (XSLT) Version 2.0:

http://www.w3.org/TR/xslt20/ (08-18-2008).

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/

M. Gaedke, A. Heil, D. Härtzer; WebComposition/DGS: Dynamic Service Components for Web 2.0 Development 10th International

Conference on Information Integration and Web-based Applications & Services (iiWAS 2008), S. 456-459, Linz, Austria,

26. November 2008, ISBN 978-3-85403-240-3.

[10] W3C, XQuery 1.0: An XML Query Language:

http://www.w3.org/TR/xquery (2008-08-18).

[11] Lehner, W. and Schöning, H., XQuery : Grundlagen

und fortgeschrittene Methoden: dpunkt Verlag,

Heidelberg, 2004.

[12] Meinecke, J., Nussbaumer, M., and Gaedke, M.,

"Building Blocks for Identity Federations." In Fifth

International Conference on Web Engineering (ICWE

2005), Sydney, Australia, 2005, pp. 203-208.

[13] W3C, Web Services Description Language (WSDL)

Version 2.0 Part 1: Core Language:

http://www.w3.org/TR/wsdl20 (08-18-2008).

http://www.w3.org/TR/xquery
http://www.w3.org/TR/wsdl20

