

R. Sommermeier, A. Heil, M. Gaedke; Lightweight Data Integration using the
WebComposition Data Grid Service First International Workshop on Lightweight
Integration on the Web (Composable Web'09), 9th International Conference on Web
Engineering (ICWE 2009), S. 30-38, San Sebastian, Spanien, 22.-26. Juni 2009.

Lightweight Data Integration using the

WebComposition Data Grid Service

Ralph Sommermeier1, Andreas Heil
2
, Martin Gaedke

1

1Chemnitz University of Technology, Faculty of Computer Science, Distributed and

Self-organizing Computer Systems Group, 09107 Chemnitz, Germany
2Microsoft Research Cambridge, CB3 0FB Cambridge, United Kingdom

1{firstname.lastname}@cs.tu-chemnitz.de, 2v-aheil@microsoft.com

Abstract. With the advent of Web 2.0, the user becomes a producer creating

lots of data by consuming the functionality of the respective Web applications.

Even though more and more valuable data is created, it is difficult to reuse it

due to lack of structure. In this paper we discuss easing data integration by

using the WebComposition Data Grid Service (WebComposition/DGS). Our

approach separates technology and information space concepts in a flexible and

extendable component model, which yields simplicity for the end user. The

model facilitates this by creating, managing and embedding data in different

formats and representations to their used applications. Furthermore, machine-

readable metadata is implicitly supported and used to link the internal data and

external data sources together.

Keywords: WebComposition, Data Grid Service (DGS), Resource Description

Framework (RDF), Metadata, Representational State Transfer (REST), Simple

Object Access Protocol (SOAP), Service-oriented architecture (SOA)

1 Introduction

A growing number of different data types arise within the scope of Web 2.0

applications, which yield a lot of interesting information. This information becomes

even more interesting if multiple data sources are linked together. The power of

linked data highlights more intriguing information [1], [2]. The current problem lies

in the re-usability of this data. To address this issue, it is required to implement at

least one interface for each data source. Obviously, this implementation is time

consuming and costly thereby making the linking of different data sources hard to

realize. The WebComposition/DGS approach addresses this issue by simplifying

writing and reading data as produced or consumed by a Web 2.0 application [3], [4].

This approach enforces concepts of meaningful URIs [5], [6] when creating

information spaces by allowing all data to be implicitly addressed by URIs. Beyond

that, the WebComposition/DGS natively supports Resource Description Framework

(RDF) statements related to these data objects so that they can be annotated with

metadata described in a machine-readable format.

In section 2 we examine the state of the art influencing our research. Section 3 shows

our approach divided into three subsections. These describe the supported protocols,

data formats and data referencing mechanism in the information space concept. In

section 4 we discuss our experience with the implementation of components around

the WebComposition/DGS to gradually compose and integrate data. Finally, section 5

summarizes our work with a view on future research activities.

2 State of the Art

Many Web 2.0 applications are valuable data silos that mostly provide the

corresponding data in very simple formats. This data can usually be accessed for

reading by transfer or transport protocols. Often Web 2.0 applications even provide

ways for adding and updating data. However, the data is mostly bound within the

Web 2.0 application and linking the data in the Web is in most cases very difficult as

the data is often not systematically addressable by any URI. In fact, the data produced

by its users and held by the Web 2.0 application is its sole asset, distinguishing it from

other business rivals. As such, major engineering challenges address the question of

how to access data in such silos by using the “best” protocol for reading and writing it

in a systematic way. In addition, simplicity in “working” with the data, i.e. the data

formats, and its corresponding metadata is another challenge to be addressed in the

context of the Web 2.0 domain and in the context of systematically integrating data.

Protocols. Protocols, within the context of Web 2.0, are usually built on the

Hypertext Transfer Protocol (HTTP). They define a set of rules which allow different

components of a Web application to communicate with each other. To integrate each

other’s data, each of the participating components must be capable of understanding

the particular protocol and is, as such, limited to the protocols it supports.

The Atom Syndication Format (ATOM) [7], [8] defines a format based on the

Extensible Markup Language (XML), using HTTP for publishing and editing data of

related resources. ATOM is a well adopted format for aggregating data mainly used

by weblogs and wikis providing data through feeds. However, the capability of the

ATOM format for writing, modifying and deleting data is barely used. While the

format itself is extendable, there is no support for serving multiple representations of

a resource. Consequently, the potential consumers integrating data using the ATOM

format are forced to support the particular representation.

The Google Data APIs [9] provide simple protocols for reading and writing data on

the Web, based on the Really Simple Syndication (RSS) and ATOM formats. The

four basic functions Create, Read, Update and Delete (CRUD) for working with data

[10] are fully supported through an interface using HTTP. Metadata is provided in the

form of additional feeds containing referential information using, for example, the

Google Base schema. However, this strategy is limited in terms of the fixed semantic

information provided by the metadata feeds. This is an issue the Semantic Web [11]

aims to solve: data integration and interoperability.

Less data centric protocols include the Simple Object Access Protocol (SOAP) and

XML Remote Procedure Calls (RPC). These protocols are not limited to the use of

HTTP and can be applied on top of different transport or transfer protocols. They do

not focus on the resource as the primary unit and are often used on a procedural

oriented data exchange. By calling business logic SOAP and RPC provide high

flexibility in terms of data exchange, however, they are often used in ignorance how

the underlying protocols (for example HTTP) work.

While HTTP as a protocol has many advantages, it becomes evident that a solution to

the data silos challenge requires not supporting one sole protocol, but as many

different protocols as possible.

Data Formats. Plenty of data exists on the Web – data, which could be shared or

linked together. However, data in the context of Web 2.0 is mostly under the sole

control of the particular Web application and stored in application-specific formats.

Limited access to this data or even just subsets of this data is provided only through a

small number of restrictive protocols including those described previously. Examples

are, the common classical Web 2.0 services for sharing movies (www.youtube.com),

pictures (www.flickr.com), private information (www.myspace.com) or private

experience and knowledge (www.ciao.com).

Weblogs provide chronologically ordered data, consisting of entries and different

views (e.g. by topic) on the data. Wikis provide data with extensive change histories

and references to data items that even do not yet exist. Both solutions store their data

in platform and vendor specific formats, barely able to exchange. Limited access to

the data is often provided using the ATOM or RSS format only. Nevertheless, for

writing and modifying the data, the standardized capabilities of these protocols are

ignored. Instead, dedicated programming interfaces are offered to access identical

functionality. First attempts to establish standardized formats to interchange data

between different platforms exist [12] but are not yet recognized by a wider

community. The community of DBpedia [13], for example, currently extracts data

from various sources, changing this unstructured data into a machine-readable format

according to linked data principles [14].

It becomes evident that the simple formats and restrictive mechanisms of these

different approaches need to be supported by a solution for integrating as well as

annotating this data. As such, a mix of simple data structures and more sophisticated,

dedicated data structures, that facilitate reuse and annotation, is needed. We believe

that this is a mix of application-specific data structures, usually based on XML, and

RDF for annotating the application-specific data.

3 The WebComposition/DGS Information Space

The WebComposition/DGS addresses the proposed approach by adopting a local

concept of the global information space. This information space enforces the co-

existence of data and corresponding metadata using the abstract components of

containers, information stores and information items. Each addressable by a distinct

URI to integrate all provided data and metadata within the global information space.

Each WebComposition/DGS is accessible via a dedicated URI that identifies the

service as a resource containing so called information stores. These information stores

are accessible through nested URIs of the superjacent WebComposition/DGS

container. Each information store in turn contains information items which can be

addressed by a nested URI and extended by a user-defined path segment. The

proposed solution provides the automatic creation of URIs in the information space

every time a new information store or item is added. Fig. 1 depicts the composition of

these URIs in the information space.

Fig. 1. Information space concepts within the WebComposition/DGS.

For each information store and item a corresponding store for metadata is maintained,

which is referred to by extending the information space’s URI with the additional path

segment /meta. This metadata describes the information store with all the relevant

information semantically describing the data itself. The clear separation of data and

metadata allows Web applications to easily access the data using simple protocols and

mechanisms. Furthermore, the store for metadata stories is understood as a resource

itself and can be addressed by its URI. Accordingly, data or metadata can be

requested separately or be combined in terms of linked data [15].

Information Space. Each component within the local information space is addressed

by its unique URI. Each sub-path of any particular URI, combined with the given

authority, denotes a distinct URI identifying a unique resource within the path

hierarchy thereby creating Semantic URIs [16]. Any resource within this information

space is identified by its URI and the local information space in Fig. 1 (i) is spanned

by one WebComposition/DGS container incorporated into the global information

space of the World Wide Web in Fig. 1 (ii).

i Local Information Space

WebComposition/DGS Container

http://vsr-data.informatik.tu-chemnitz.de/datagridservice

Information Store

http://vsr-data.tu-chemnitz.de/datagridservice/people

Information Store

http://vsr-data.tu-chemnitz.de/datagridservice/news

Information Item

http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier

Information Item

http://vsr-data.tu-chemnitz.de/datagridservice/people/gaedke

Meta data of Information Item

http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier/meta

Meta data of Information Store

http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier/meta

ii Global Information Space

Container. The WebComposition/DGS service instance provides basic functionality

to store, manipulate and easily query resources. The service is understood as a

container comprising the functionality to be applied to the enclosed resource.

Information Store. The information store is a logical concept containing a set of

related resources. Depending on the applied technology, the information store could

be understood as a list, XML file, database or similar. Different implementations of

information stores can be hosted within a single container at the same time. It is

important to point out that the underlying technology and its evolution are transparent

to the consumer of the service and do not affect the data integration.

Information Item. Information items represent the actual resources stored in an

information store. Information items could be described in XML, a row in a relational

database table, a file or an element out of a list. On a logical level, information items

could even contain further information stores.

All components introduced so far outline the fundamentals of an easy data integration

process. Besides the standard representation of data using XML, unstructured data,

even binary data, is supported in the actual implementation. Enforcing a strict policy

of how URIs are generated within the WebComposition/DGS results in any stored

information, as well as its corresponding metadata, to be addressed by a dedicated

URI. The possibility to access any data and metadata without exception is the

fundamental concept that allows us to perform a standardized data integration

lifecycle within the WebComposition/DGS.

4 Data Integration Lifecycle

One outstanding engineering challenge to overcome is to simplify handling data used

by different types of common protocols in the context of Web 2.0. A data referencing

mechanism is required for automatically creating data URIs for each information

store, or item, which support the principles of linked data.

Data Referring. As information items are not necessarily bound by any entity (e.g.,

in form of a file), it is not possible to refer them natively by any URI. Therefore, the

WebComposition/DGS provides the capability to create user-defined URIs by

applying URI templates [17]. The URI of the information item’s superordinate

information store is extended with a path segment, which maps to any key that

uniquely identifies the item within its native representation. This could be a primary

key within a database, a line in a text file or a certain tag within an XML file. Similar

to the information store’s implementation this mechanism is transparent to the

consumer of the service, which solely makes usage of the corresponding URI to

integrate the corresponding data.

When using XML as a data format, we can make explicit use of XPath queries to

retrieve a particular information item. The XPath query is mapped to the

corresponding URI template and saved as metadata for the information store. Fig. 2

depicts the representation of a resource representing a person as XML using a Telnet

session to visualize the integration of the HTTP protocol and different content types.

Fig. 2 (1) shows the execution of a HTTP GET to an information store accepting the

content type text/xml request and the resulting XML data.

Fig. 2. Data referring using content negotiation.

Fig. 2 (2) shows the execution of a HTTP GET request to the same information store.

However, here the difference is the accept header of application/rdf+xml. The

resulting response provides a friend of a friend (FOAF) [18] resource (which is a RDF

graph) and contains machine-readable data to be used in terms of linked data. The

same result can be retrieved by adding /meta to the original URI of the request

without specifying the accept header. This allows the human user to retrieve the same

representation of the data using a convenient mechanism. This mechanism, however,

is not restricted to those two content types. Additional components can be

implemented and specified to handle further representations of a resource. This

characteristic is a fundamental capability to serve as many different data integrators as

not all of them are capable of dealing with a single data format (cf. section 2).

Data Integration. The Telnet example above shows the technical realization of the

data referencing mechanism using simple HTTP requests. The creation of information

stores and information items, however, is not very convenient using these

technologies. Data integration is more than simply providing structures of arbitrary

data on the Web. Combining data from different sources as well as providing the user

with a unified view of this data is an essential part of the data integration lifecycle.

For human use there is still a need for more user-friendly clients. The Telnet way is

reasonable for demonstration but not for practical use. A dedicated component within

Content-Type text/xml1

Content-Type application/rdf+xml2

the WebComposition approach that addresses this issue is the

WebComposition/Data Grid Service List Manager (DGSLM). This component, to be

used in any Web browser allows creating, modifying or deleting data in the

WebComposition/DGS information space. Using this component, we have the

possibility to manage our information space via Web browsers without the need for

programming. The component is build upon the unified interface of HTTP to read,

write, manipulate and delete data. It uses data structures of information stores to

dynamically create Web forms based on the metadata of that particular information

store. Fig. 3 (a) illustrates the DGSLM displaying a list of information items from an

information store.

Fig. 3. Dynamic data integration lifecycle.

The corresponding responsibility of the WebComposition/DGSLM, is to provide the

data representation independent from the underlying data structures. Data stored in

databases, flat XML or binary files can be handled and accessed using a single,

simple interface. By requesting a particular information item, a corresponding form is

dynamically created Fig. 3 (b) that allows creating or manipulating new or existing

information items.

To support the CRUD methods (cf. section 2) of the WebComposition/DGS, the

WebComposition/DGSLM offers the complete functionality of HTTP to read, write

manipulate and delete data. On behalf of the user the application creates

corresponding HTTP request as defined by the endpoint, while the content of the

request is dynamically allocated and sent to the WebComposition/DGS. Fig. 3 (c)

WebComposition/DGSLMa

Representation of Resourcesd

Manipulation of Resourcesc

Dynamic Interface Generationb

depicts representation of the previously created data. Extensible Stylesheet Language

(XSL) transformations, also stored within the WebComposition/DGS information

store are used to represent the data, in this example at the Website of the Chemnitz

University of Technology.

The DGSLM provides the ability of easily managing information stores. It is not

limited to a certain information store though. Hence, the WebComposition/DGSLM

overcomes the typical difficulty of accessing multiple heterogeneous data sources

from within a single Web application.

5. Conclusion and Future Work

For more than nine months, the WebComposition/DGS service is used in a production

environment, using real, externally visible data of the research group Distributed and

Self-organizing Computer Systems at the Chemnitz University of Technology,

Germany. During this time, the data model was gradually exposed and extended with

new resources, new representations and new components, according to the emerging

needs of the group, and demonstrated the DGS’s ability to deal with different

representations of the data model for maximum reusability. Some parts of it were

transformed from originally unstructured data, mainly managed with Wiki software

before. This prior form of managing the data proved to be too hard for integrating and

consuming outside of the Wiki itself. Therefore, a WebComposition/DGS

implementation was used to successively expose data in accordance to Web standards

and the REST principles. Over time, the data of publications, courses, projects,

student projects and members of the research group were included. The data typically

contains several hundred entries, describing historical and recent data. In addition, the

data model was extended several times to accommodate for new information needs, to

introduce links between different resources and to add new representations. The

approach of encapsulating technologies in components appears to be an important

factor for end user support. With the developed system, new data can be created ad-

hoc. It is automatically editable in Web forms, without any scripting or code

deployment. It can be integrated into Web pages without the need to know the

involved internal components, transformations, protocols and formats. Whereas in our

current system XML schemas and XSL transformations need to be specified when

creating new data, the architecture allows adding more user-friendly components that

automate this process in the future. The applied components also favor the reusability

of the resources by automating the process of generating content representations

according to the content negotiation. On the Website, the data could be integrated at

multiple locations for realizing different views on it, e.g. on personal homepages, on

project pages and on central group pages. Furthermore, the study illustrates the

system’s potential for bottom-up data growth [19]. As demonstrated, components

were gradually added to the WebComposition/DGS, while the service was in

productive use, i.e. integrated into the group’s Website.

Future work includes the development of a publish/subscribe mechanism for every

information store to support event driven linked data concepts. Another interesting

open issue is the transparent handling of URIs as references to other data entries or

machine-readable information on the Web with corresponding user interfaces.

An online example of the WebComposition/DGS and its corresponding

downloadable components can be found at http://www.webcomposition.net/dgs. The

source code is available via http://www.codeplex.com/webcompostition.

References

1. Linked Data, http://www.w3.org/DesignIssues/LinkedData.html

2. How to Publish Linked Data on the Web, http://www4.wiwiss.fu-

berlin.de/bizer/pub/LinkedDataTutorial/

3. Heil, A. and Gaedke, M.: WebComposition/DGS: Supporting Web2.0

Developments with Data Grids. In IEEE International Conference on Web

Services (ICWS), pp. 212-215. IEEE Computer Society, Los Alamitos

(2008)

4. What Is Web 2.0,

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-

20.html

5. Cool URIs don't change, http://www.w3.org/Provider/Style/URI

6. Cool URIs for the Semantic Web, http://www.w3.org/TR/2007/WD-

cooluris-20071217/

7. The Atom Publishing Protocol – Requests for Comments: 5023,

http://www.ietf.org/rfc/rfc5023.txt

8. The Atom Syndication Format – Requests for Comments: 4287,

http://www.ietf.org/rfc/rfc4287.txt

9. Google Data APIs, http://code.google.com/intl/de/apis/gdata/

10. Kilov, H.: From Semantic to Object-oriented Data Modeling. In Proceedings

of the First International Conference on Systems Integration, pp. 385-393.

IEEE, Piscataway (1990)

11. W3C Semantic Web Activity, http://www.w3.org/2001/sw/

12. Völkel, M. and Oren, E.: Towards a Wiki Interchange Format (WIF) -

Opening Semantic Wiki Content and Metadata. In First Workshop on

Semantic Wikis (2006)

13. DBpedia, http://www.dbpedia.org/

14. W3C SWEO Linking Open Data Community Project

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOp

enData

15. Linked Data, http://www.w3.org/DesignIssues/LinkedData.html

16. Sahoo, S.S., et al.: Knowledge Modeling and its Application in Life

Sciences: A Tale of two Ontologies. In 15th International Conference on

World Wide Web, pp. 317-326. ACM, New York (2005)

17. URI Template, http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt

18. FOAF Vocabulary Specification 0.91, http://xmlns.com/foaf/spec/

19. Heil, A., Meinecke, J., and Gaedke, M.: Components for Growing the

RESTful Enterprise. In Fachtagung Modellierung betrieblicher

Informationssysteme, pp. 273-283. Springer, Bonn (2008)

http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/TR/2007/WD-cooluris-20071217/
http://www.w3.org/TR/2007/WD-cooluris-20071217/
http://www.ietf.org/rfc/rfc5023.txt
http://www.ietf.org/rfc/rfc4287.txt
http://code.google.com/intl/de/apis/gdata/
http://www.w3.org/2001/sw/
http://www.dbpedia.org/
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/DesignIssues/LinkedData.html
http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt
http://xmlns.com/foaf/spec/

