
Future Development Environments
for Computational Scientists

Andreas Heil, Matthew J. Smith and Alexander Brändle
Computational Science Laboratory, Microsoft Research

7 JJ Thomson Avenue, Cambridge CB3 0FB, United Kingdom

aheil@acm.org, {mattsmi, alexbr}@microsoft.com

ABSTRACT

Computational Scientists are both creators and end-users of

scientific models. Different aspects to their work target different

audiences and generally require different development

approaches. Here we report outcomes of an experimental

collaboration between Software Engineers and Computational

Scientists to create a new development environment to encompass

diverse end user groups.

Categories and Subject Descriptors

D.1.7 [Software]: Programming Techniques – Visual

Programming. D.3.2 [Software]: Language Classification – Data-

flow languages. I.6.7 J.2 [Computer Applications]: Physical

Sciences and Engineering – Earth and atmospheric sciences.

General Terms

Design, Experimentation, Human Factors, Languages.

Keywords

Computational Science, Scientific Workflow, Scientific Dataflow,

Scientific Application Composition.

1. INTRODUCTION
Computing has dramatically changed the way scientific research

is done and communicated. Models of systems and processes are

routinely developed and simulated in all areas of science, and

computational methods are typically utilised in data collection and

analysis.

Scientists in the future will increasingly become literate in

methods used by Software Engineers, enabling them to more

effectively exploit the capabilities of new computational tools and

resources. This paper describes lessons learned through

collaboration between Software Engineers and Computational

Scientists to jointly research new model development

environments targeted at Computational Scientists, and the target

audiences of Computational Scientists, as end users.

The research of Computational Scientists typically involves the

development of new computational models and methods.

Complex multi-component models, usually bringing together

previously developed and new sub-components into a larger

dynamical model, are now frequently developed and exposed as

services. The communication of scientific models and their

predictions is now a major area of science, with policy makers

increasingly turning to scientists for predictions of complex

dynamical systems. Scientific model development is increasingly

done collaboratively, with different scientific teams working on

sub-components of the larger model, becoming analogous to

professional software development. It is therefore not surprising

that the majority of scientists consider developing scientific

software as important for their own research [1].

Despite the need for software to help conduct and communicate

scientific research, Computational Scientists are generally “end-

user programmers” [2] i.e. they are not typically involved in the

professional software development for those purposes. While

there is a great deal of variation in the level of programming

expertise amongst Computational Scientists, they typically have

entirely different goals to Software Engineers when creating and

composing software (by “Software Engineers”, we mean the

group of professionals developing software as their primary task).

Traditional software engineering approaches are therefore seldom

applied when models and methods are developed by

Computational Scientists, even though they could plausibly

advance the state of the art. For example, Computational

Scientists rarely employ the formal debugging methods so

frequently used in traditional software engineering. A lack of such

methods makes it extremely difficult to identify and distinguish

between software bugs, model errors and approximation errors in

large complex models, especially when the “correct” (i.e. bug

free) predictions of a model may not even be known [1].

1.1 Composing Scientific Applications
Scientific applications, in contrast to the structure of traditional

software applications, usually consist of various and changing

connected components, often chained together in workflows to

repeatedly perform particular processes (Figure 1). In the early

stages of exploring a research question the main focus of a

Computational Scientist is often on the development of a model,

and in constructing the appropriate workflow, to generate new

scientific insight. Computational efficiency is usually a much

lower priority, even though processing the data or running a

model can be time consuming and will potentially become more

important in later stages of the process.

Figure 1. A simple scientific workflow for processing data

Spreadsheet
Application

Textfile
Spreadsheet
Application

Database

Tetxfile

Statistical
Application

Textfile

Visualisation

Model

Textfile

Spreadsheet
Application

andreas
Typewritten Text
AVI 2010								 May 25-29, 2010, Rome, Italy

Computational Scientists often need to “chain together” different

sub-models and analysis, sometimes doing so as part of multi-

institutional collaborative projects and involving off-site datasets.

This leads to systems that are far more complex than that depicted

in Fig. 1. Significant model building programs therefore

frequently include the involvement of Software Engineers who are

skilled in developing complex multi-component applications.

Such composition of scientific applications has been addressed

recently in a wide range of research projects, however these are

mainly driven by Software Engineers with the focus on the

technical aspects of bridging well-established workflow

technologies with scientific applications, and integrating

heterogeneous systems and components. A simple way of

composing these sub-models and analysis in forms of services

could improve development process significantly.

1.2 Communicating Models and Data
Scientists have two broad audiences; other scientists wanting to

investigate, adapt and use various aspects of the model, and non-

scientists typically interested in the predictions of the model and,

to a lesser extent, how the model works. Therefore,

Computational Scientists are likely to want to represent their

models and findings with different degrees of abstraction

depending on their collaborators, audience and context (Figure 2).

For example, scientists working collaboratively may discuss their

model at the level of the actual code. Other collaborations, such as

at an interdisciplinary level, may benefit from a higher level of

abstraction. In contrast, communicating research methods and

findings to policy makers may utilise a very abstract depiction of

the model, with the emphasis placed on the model predictions

rather than the methods.

Figure 2. Development Intersections for Computational

Scientists

2. EUD FOR COMPUTATIONAL SCIENCE
The Microsoft Computational Science Studio (MSCSS) provides

a research prototype environment allowing different levels of

abstraction in the development and composition of scientific

applications. It is based on a dataflow paradigm, rather than a

control flow paradigm, for composing applications. Spreadsheet

applications like Microsoft Excel are well known examples

adopting the dataflow paradigm. MSCSS includes (1) a shell

scripting tool allowing the formal scripting of dataflows, (2) a

visual designer and visual programming language for composing

scientific applications/experiments using dataflows and (3) a

graphical designer to create visual applications based on the

underlying experiments. In Section 3 we will examine the lessons

learned while building and testing these tools.

2.1 Dataflow Scripting
To combine model components in the form of services, we

provided a dataflow shell (DFShell) that allows

applications/experiments to be composed based on a scripting

language. DFShell is a lightweight scripting environment for

executing dataflows. The default behavior of these is to cause

output variables to be automatically recalculated when the values

of input variables change. To achieve this, DFShell allows the

definition of (1) service endpoints including port descriptions, (2)

data buses and (3) mappings between service port descriptions

previously defined data busses.

2.2 Dataflow Editor
At a higher level of abstraction we enable scientists to identify

and connect data sources, computational services, scripting

components, user interfaces and other visualisation elements to

computational models of varying complexity through the use of a

Dataflow Editor (Figure 3).

Figure 3. MSCSS Dataflow Editor

This environment allows the development of data driven

applications, but additionally incorporates various additional

components to control the dataflow (such as requiring the user to

indicate when a particular data bus is to be switched on). We

therefore also included common user interface elements such as

buttons and sliders to interact with the services.

2.3 Visual UI Editor
The highest abstraction level is provided through a Visual User

Interface (UI) Editor (Figure 4 which is based on Figure 3).

Figure 4. MSCSS User-Interface Editor

Computational Scientist

Le
ve

l o
f

A
b

st
ra

ct
io

n

Programming

Policy Maker

Collaborative
Scientist

Data

Software
Engineer

Computational Services
(available)

Visualisation Component Computational Service
(used)

Interactive UI Elements Visualisation Component Data Source

Interactive UI Elements

Visualisation Component

Additional UI Elements

andreas
Typewritten Text
AVI 2010								 May 25-29, 2010, Rome, Italy

The Visual UI Editor allows a rich user interface to be constructed

based on the “experiment” in the Dataflow Editor. Data

visualisations and UI controls can be arranged to provide a user

interface based on the experiment that meets the specific

communication requirements. Multiple views can be created on

the same experiment for different communication purposes. A key

feature of this method is that the UI can be constructed while

remaining dynamically connected to the model, such that changes

to the model or data can lead to automatic updates in the UI.

3. LESSONS LEARNED
The Microsoft Computational Science Studio (MSCSS) was

developed as a prototype through collaboration between

Computational Scientists and Software Engineers. Including

Computational Scientists in this process led to valuable insights

into end-user requirements for future software environments.

3.1 Dataflow Scripting
Benefits: The dataflow scripting language makes it much easier

for Computational Scientists to communicate their intentions to

traditional Software Engineers. Software Engineers are normally

familiar with the process of scripting data flows. Based on the

script, they are able to perform systematic analyses of the

dataflows without knowing the scientific basis for the model, and

the specific details of the model implementation. It also makes it

easier to debug applications originally developed by

Computational Scientists.

Drawbacks: The Computational Scientist has to become familiar

with the paradigm of building scientific applications out of

dataflows. Although spreadsheet applications are widely used the

construction of complex applications via dataflows is not

currently widespread practice in Computational Science and the

benefits of the approach to Computational Scientists have not

been fully explored. In addition, the structure of scientific

applications, especially in complex multicomponent models, are

not always based on the automatic triggering of components in

response to changes in input variables. Instead, Computational

Scientists usually require a more diverse range of triggering

events than the one implemented in the current version of the

scripting language.

3.2 Dataflow Editor
Benefits: The visual appearance of the dataflow encourages users

to explore the model and experiment with its structure, and makes

it much easier to communicate the structure of the model to other

users. The immediate visual feedback resulting from changes in

the dataflow allows the structure and assumptions of the model to

be more intuitively understood, even enabling a degree of

debugging and model verification by a less experience computer

user. Providing a common user interface also allows the scientist

to easily add or change control dependencies. Moreover, in this

case the Computational Scientist does not necessarily need to

fully understand all of the input and output formats to compose

functioning workflows. The ability to drop in data in various data

formats (CSV, NetCDF) also allows easy exploration of the data.

Drawbacks: The visual language does, as all visual programming

languages, have a tendency to visually overburden the user. While

schematic representations are well received on a coarse grained

level, they become confusing at a certain level of detail.

Mechanisms are required that allow models to become more

visually structured. Therefore it is currently not completely

intuitive for Computational Scientists to develop new models

within this environment. Currently, we provide a migration- and

mitigation- strategy by explicitly allowing the user to mix visual

programming elements with traditional computational elements

(e.g. scripting or precompiled modules) but building new

computational services currently still requires the support for a

Software Engineer.

3.3 Visual UI Editor
Benefits: Computational Scientists can communicate models and

their predictions using a clear UI allowing for a variety of static

and dynamic components. Dynamic user interfaces can be

constructed relatively easily and can be updated automatically

when input data, model components or the model structure

changes. This new way of packaging models together with user

interfaces addresses an expanding future “market” for assisting

collaboration and communication in scientific research.

Drawbacks: The UI editor is currently limited in the number of

components available to communicate the data and model

structure. The creation of a new visualisation component currently

still requires the assistance of a Software Engineer.

3.4 Conclusions
There are both significant advantages and disadvantages to the

approach taken in MSCSS in terms of providing a Development

Environment for Computational Scientists. Further research is

needed to identify shortcomings to this type of Development

Environment. Reusing and adapting existing code and procedures

is common software engineering but it remains to be seen whether

Computational Scientists would equally significantly benefit from

encoding their methods into dataflows. In contrast, the MSCSS

already shows potential to benefit those Computational Scientists

working with more complex models. We believe scientists

working on complex models as part of multi-institutional efforts

(such as climate change models) would benefit most from this

technology in its present form. In such cases the overall model

structure can be represented both graphically and textually, but

can also be modified and run, allowing sub components to be

created, modified and “plugged in” relatively easily. Our Visual

UI editor potentially also removes a lot of the overhead in

communicating model structure and predictions to diverse

audiences. We believe that targeting Computational Scientists for

End User Development is a likely to be a growth area, with the

inevitable increase in the use and reliance on predictions of

complex multi component models into the future.

4. ACKNOWLEDGMENTS
This work was made possible by Drew Purves, Martin Calsyn,

Vassily Lyutsarev and Benjamin Schröter.

5. REFERENCES
[1] Hannay, J., Langtangen, H.P., MacLeod, C., Pfahl, D.,

Singer, J, and Wilson, G. 2009. How Do Scientists Develop

and Use Scientific Software? Software Engineering for

Computational Science and Engineering.

DOI= http://dx.doi.org/10.1109/SECSE.2009.5069155.

[2] Myers, B.A., Burnett, M.M., Wiedenbeck S., Ko A.J.,

Rosson M.B. 2009. End User Software Engineering:

CHI’2009 Special Interest Group Meeting. Boston, MA.

USA.

andreas
Typewritten Text

andreas
Typewritten Text
AVI 2010							 May 25-29, 2010, Rome, Italy

